WHEN THE MERMAIDS CRY – THE PATH TO SUCCESSFUL RESOLUTION

II: THE PATH TO SUCCESSFUL RESOLUTION

This unprecedented plastic waste tide appears as vast as the ocean, as ungraspable as the unfathomable mass of microscopic plastic fragments present at sea, transported by winds and currents, yet, ultimately, the plastic tide can become as limited as our chosen relationship with plastics, which involves a dramatic behavioral change on our part. The path to successful resolution of the crisis clearly appears…as we are the problem and the solution.

THE VICTIMS AND THE AGGRESSORS

The despondent effects and too numerous casualties of the great plastic tide are visible, but more alarmingly, beyond visual, which ought to prompt the perpetrators to choose no other path than the advocacy and culture of consistent and sustained behavioral changes.

Creek in Manilla
Creek in Manilla, Philippines, March 01 2009. Photo: Francis R. Malasig

THE VICTIMS

Animals

From the whale, sea lions, and birds to the microscopic organisms called zooplankton, plastic has been, and is, greatly affecting marine life, i.e animals on shore and off shore, whether by ingestion or entanglement.

In a 2006 report, Plastic Debris in the World’s Oceans, Greenpeace stated that at least 267 different species are known to have suffered from entanglement and ingestion of plastic debris. The National Oceanographic and Atmospheric Administration said that plastic debris kills an estimated 100,000 marine mammals annually, millions of birds and fishes.

The largest pieces of marine plastic debris, miles long discarded fishing nets and lines mostly, take an obvious toll on animals. These derelicts nets, called ghost nets, snare and drown thousands of larger sea creatures per year, such as seals, sea lions, dolphins, sea turtles, sharks, dugons, crocodiles, seabirds, crabs, and other creatures. Acting as designed, these nets restrict movement causing starvation, laceration, infection, and, in animals that need to return to the surface to breathe, suffocation.

Entangled seal by derelict net
Entangled seal by derelict net, Hawaii. Photo Source: NOAA

On shores, researchers have also watched in horror as hungry turtles wolf down jellyfish-like plastic bags and seabirds mistake old lighters and toothbrushes for fish, choking when they try to regurgitate the plastic trash for their starving chicks.

Turtle eats plastic
Turtle eats plastic. Photo Source: Greenhouse Carbon Neutral Fdn

In the waters, plastic bags specifically, can be mistaken as food and consumed by a wide range of marine species, especially those that consume jellyfish or squid, which look similar when floating in the water column.

Albatross and others birds are choosing plastic pieces because of their similarity to their own food as well. Captain Moore and his Alguita team did see, above the GGP, albatrosses and tropicbirds circling above the line of trash. With little else to choose, they were obviously eating plastic. The birds seemed to be picking and choosing “the reds and pinks and browns. Anything that looks like shrimp,” Moore says. Earlier in the trip, the Alguita had visited the French Frigate Shoals, off Hawaii, home to endangered monk seals and seabird rookeries. In the birds’ gullets researchers found red plastic particles. Greenpeace reported that a staggering 80 percent of seabird populations observed worldwide have ingested plastics. Research into the stomach contents of dead Fulmars from the Netherlands, between 1982 and 2001, found that 96 percent of the birds had plastic fragments in their stomachs with an average of 23 plastic pieces per bird (Van Franeker and Meijboom, 2003).

Midway atoll
Midway atoll, bird corpse. Photo: © Chris Jordan

When plastic ingestion occurs, it blocks the digestive tract, gets lodged in animals windpipes cutting airflow causing suffocation, or fills the stomach, resulting in malnutrition, starvation and potentially death. Indeed, it is found that debris often accumulates in the animals’ gut and give a false sense of fullness, causing the animal to stop eating and slowly starve to death.

Midway atoll
Midway atoll, bird corpse. Photo: © Chris Jordan

In April 2002 a dead Minke whale washed up on the Normandy coast in France. An investigation found that its stomach contained 800 kg of plastic bags (GECC, Groupe d’Etude des Cétacés du Cotentin, 2002).

In February 2004, a Cuviers Beaked whale (Ziphius cavirostris) was found washed ashore on the west coast of the Isle of Mull, Scotland. Cuviers beaked whales are rarely seen in coastal waters, as they are predominantly a deep-water species. The Hebridean Whale and Dolphin Trust took various skin and blubber samples and removed the stomach for further study by the Scottish Agricultural College. On initial removal it was found that the entrance to the stomach was completely blocked with a cylinder of tightly packed shredded black plastic bin liner bags and fishing twine. It is believed that this made it difficult for the animal to forage and feed effectively.

50 to 80 percent of sea turtles found dead are known to have ingested plastic marine debris.

The smaller the pieces of plastic get, the more dangerous they are to marine organisms. Fragmented plastic, specifically nurdles and small size mermaid tears, are found in the stomach of smaller sea creatures as well: fish, birds, marine mammal, reptile, jelly fish, select plastic pellets as they resemble fish eggs.

Whether the chemicals contained in the plastics are then desorbed to digestive fluids and transferred to tissues in quantities significant enough to harm the animals is subject to ongoing, yet still incomplete, research. However, as more and more studies on the matter are undergone, unpleasant findings are definitly uncovered.

What is proven, as we’ve seen supra, is that plastic does soak up pollutants, acting as toxic-sponge for man-made toxins present in the ocean, thus accumulating pollutants such as polychlorinated biphenyls (PCBs) and heavy metals at concentrations up to 1 million times higher than in ocean water (Moore et al, 2001). PCBs can lead to reproductive disorders, death, an increased risk of disease, and an alteration of hormone levels (Ryan et al., 1988;Lee et al, 2001). They have been linked to the masculinisation of female polar bears and spontaneous abortions and declines in seal populations. In 1988, Ryan et al obtained evidence that PCBs in the tissues of Great Shearwaters were derived from ingested plastic particles (from Derraik, 2002). Furthermore, DDT, a pesticide that was banned in the US in the 1960’s and labeled by the Environmental Protection Agency in 1987 as a “probable human carcinogen,” has been found on these plastics fragments. The most recent review of all evidence concludes that exposure to DDT before puberty increases the risk of breast cancer.

Food Chain

In a September press conference, Doug Woodring from Project Kaisei, said that assessments of the impact of plastic debris on phytoplankton, zooplankton, and mesopelagic (midwater) fishes are undergoing. The samples collected from the seawater will be subject to more scientific studies for the toxicity of the plastics and how this is really affecting our food chain (in ways that are only just becoming known… and not good ways).

Plastic found in fish guts
Plastic found in Rainbow Runner fish guts. Photo Source: Algalita Marine Research Foundation

Katsuhiko Saido, Ph.D said, “We found that plastic in the ocean actually decomposes (…) giving rise to yet another source of global contamination that will continue into the future.” Furthermore, as Saido added: “We are concerned that plastic pollution is also caused by these invisible materials and that it will harm marine life.” While the potential toxicity of these tiny plastic constituents is still understudied for much of marine life, plastics are abundant in many forms. Plastics, including polystyrene, are common in the wads of accumulated, undigested matter that young black-footed albatrosses cough up before they fledge.

Whether plastics present a unanimously accepted and proven toxic challenge to marine life, and subsequently to humans, is one of the biggest challenges facing scientists right now.

Health

Saido’s latest science report last summer about the decomposition of polystyrene plastics vests a simple reality: Bisphenol A (BPA) has been shown and proven to interfere with the reproductive systems of animals. PS oligomer and BPA from plastic decomposition are toxic and can be metabolized, while styrene monomer is a suspected carcinogen. Low levels of BPA and PS oligomer have been proven to cause hormone disruption in animals.

More scientific reports are being published on the effects of Bisphenol A on animal and human health, and the news is not good.

In 2009, a professional, international medical organization in the field of endocrinology and metabolism, The Endocrine Society, reported data from new research on animals experimentally treated with BPA. Studies presented at the group’s annual meeting show BPA can affect the hearts of women, can permanently damage the DNA of mice, and appear to be entering the human body from a variety of unknown sources. A 2005 study, which analyzed BPA serum concentrations, concluded that “exposure to BPA is associated with recurrent miscarriage”.

The first major study of health effects on humans associated with bisphenol A exposure was published in September 2008 by Iain Lang and colleagues in the Journal of American Association. The cross-sectional study of almost 1,500 people assessed exposure to bisphenol A by looking at levels of the chemical in urine. The authors found that higher bisphenol A levels were significantly associated with heart diseases, diabetes, and abnormally high levels of certain liver enzymes.

A 2008 scientific review concluded that “prenatal exposure to (…) low doses of BPA alters breast development and increases breast cancer risk”. A 2009 scientific review, funded by the “Breast Cancer Fund”, has recommended “a federal ban on the manufacture, distribution and sale of consumer products containing bisphenol A”.

A 2009 study on urinary concentrations concluded that prenatal BPA exposure might be associated with externalizing behaviors in two-year old children, especially among female children.

A 2009 study on Chinese workers in BPA factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire, and overall dissatisfaction with their sex life than workers in factories that made products ranging from textiles to machinery, in which there was no heightened BPA exposure. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

A 2009 review of available studies has concluded, “Prenatal BPA exposure acts to exert persistent effects on body weight and adiposity.”

A 2009 scientific review about environmental chemicals and thyroid function concluded, “Available evidence suggests that governing agencies need to regulate the use of thyroid-disrupting chemicals, particularly as such uses relate exposures of pregnant women, neonates and small children to the agents”. A 2009 review summarized BPA adverse effects on thyroid hormone action.

Bali Trash
Kuta beach, Bali. Photo Source: Claude Graves

All sea creatures, from the largest to the microscopic organisms are, at one point or another, swallowing the seawater soup instilled with toxic chemicals from plastic decomposition. Much of ocean’s life is in the microscopic size range and zooplankton is the base of the food chain. As environmentalists remind the world’s population, “…We are eating fish that have eaten other fish, which have eaten toxin-saturated plastics. In essence, humans are eating their own waste…” (Dixit Renee Brown, WiredPress).”

Beaches, Coast, Sea Floor, Shorelines

Blatantly visible is the plastic spill washing up on the shores and beaches. Just a walk on any beach, anywhere in the world, and plastic debris are found in one form or another. All over the world the statistics are ever growing, just staggeringly. Last year, an estimated 150,000 tons of marine plastic debris washed up onto the shores of Japan and 300 tons a day on India’s shores.

Layson Island
Layson Island, Hawaiian islands. Photo Source: NOAA

The Hawaiian Archipelago, extending from the southernmost island of Hawaii 1,500 miles northwest to Kure Atoll, is among the longest and most remote island chains in the world. The 19 islands of the archipelago, including Midway atolls, receive massive quantities of plastic debris, shot out from the Pacific gyres. Some of the plastic litter is decades old. Some beaches are buried under 5 to 10 feet of plastic trash, while other beaches are riddled with “plastic sand,” millions of grain-like pieces of plastic that are practically impossible to clean up. One of the reasons marine debris accumulates in these islands is the movement of debris within the North Pacific Subtropical Convergence Zone (STCZ), as we have explained supra.

Two studies on several islands off Jakarta Bay and islands further to the northwest in the Java Sea, reported that debris pollution on shorelines had substantially increased between 1985 and 1995 (Uneputty and Evans 1997b, Willoughby et al. 1997). Both studies noted that results implicated Jakarta as a major source of the debris. On 23 of the islands, it was reported that the total litter at the strandline ranged from not detectable to 29.1 items/m (Willoughby et al. 1997). Plastic bags, polystyrene blocks, and discarded footwear accounted for 80 percent of the items found.

Researchers Barnes and Milner (2005) list five studies which have shown increases in accumulation rates of debris on mid to high latitude coasts of the southern hemisphere.

Surveys of shorelines around the world, reported by Greenpeace, have recorded the quantity of marine debris either as the number of items per km of shoreline or the number of items per square meter of shoreline. The highest values reported were for Indonesia (up to 29.1 items per m) and Sicily (up to 231 items per m).

Seabed Pollution
Seabed Pollution. Photo Source: Bouteilles à la mer org.

It’s been reported by Greenpeace that an estimated 70 percent of the mass of fragmented plastic present in the open oceans of the world does sink to the deep-sea bed. A limited body of literature exists, though, concerning these small to microscopic particles (micro debris) mirroring the little research addressed to marine litter on the sea floor.

Ecosystem Changes

Another effect of the plastic tide that goes beyond visual is its potentiality to change entire ecosystems.

“Plastic is not just an aesthetic problem,” says marine biologist David Barnes of the British Antarctic Survey. “It can actually change entire ecosystems.” He has documented that plastic debris which floats on the oceans, acts as rafts for small sea creatures to grow and travel on. This represents a potential threat for the marine environment should an alien species become established. It is postulated that the slow speed at which plastic debris crosses oceans makes it an ideal vehicle for this. The organisms have plenty of time to adapt to different water and climatic conditions.

Coral Reefs

Derelict fishing gear can be destructive to coral reefs. Corals are in fact animals, even though they may exhibit some of the characteristics of plants and are often mistaken for rocks. In scientific classification, corals fall under the phylum Cnidaria and the class Anthozoa. They are relatives of jellyfish and anemones. (NOAA)

Nets and lines become snagged on coral and subsequent wave action causes coral heads to break off at points where the debris was attached. Once freed, debris can again snag on more coral and the whole process is repeated. This cycle continues until the debris is removed or becomes weighted down with enough broken coral to sink (NOAA 2005a). Eventually, derelict fishing gear may become incorporated into the reef structure.

Bags in Ocean
Plastic on Coral. Photo Source: EPA

Plastic bags can kill coral by covering and suffocating them, or by blocking sunlight needed by the coral to survive. During 2001, so many plastic bags were regularly seen in the Gulf of Aqaba, off the coast of Jordan, that the Board of Aqaba Special Economic Zone issued a law banning the production, distribution, and trade of plastic bags within the areas under their jurisdiction.

Economics

Marine litter cause serious economic losses to various sectors and authorities. Among the most seriously affected are coastal communities (increased expenditures for beach cleaning, public health and waste disposal), tourism (loss of income, bad publicity), shipping (costs associated with fouled propellers, damaged engines, litter removal and waste management in harbors), fishing (reduced and lost catch, damaged nets and other fishing gear, fouled propellers, contamination), fish farming and coastal agriculture.

African coasts
Haina, Dominican Republic. Photo Source: Eduardo Munoz

In a 2007 Fortune Magazine article about India, it was written that the costs of river pollution to the economy are enormous. Waterborne diseases are India’s leading cause of childhood mortality. Shreekant Gupta, a professor at the Delhi School of Economics who specializes in the environment, estimates that lost productivity from death and disease resulting from river pollution and other environmental damage is equivalent to about 4 percent of gross domestic product.

The bill for cleaning the beaches in Bohuslän, on the west coast of Sweden, in just one year was reportedly at least 10 million SEK or $1,550,200. In Britain, Shetland fishermen reported that 92 per cent of them had recurring problems with debris in nets, with each boat losing between $10,500 and $53,300 per year as a result of marine litter. The cost to the local industry could be as high as $4,300,000. The municipality of Ventanillas in Peru has calculated that it would have to invest around $400,000 a year in order to clean its coastline, while its annual budget for cleaning all public areas is only half that amount. (Unep)

Our Oceans and coastlines are under unprecedented plastics waste attack. It’s coming back at us in many ways. It’s a dire problem that only received serious scientific and public attention in the early 90’s, as we know, but all along the perpetrators have simply and clearly been identified.

THE AGGRESSORS

The obvious and simple answer is: us…

Behind each and every piece of littered plastic debris there is a human face. At a critical decision point, someone, somewhere, mishandled it, either thoughtlessly or deliberately. Cigarette filters and cigar tips, fishing line, rope and gear, baby diapers and nappies, six-pack rings, beverage bottles and cans, disposable syringes, tires, the litany of plastic litter is as varied as the products available in the global marketplace, but it all shares a common origin.

Sources

260 million tons per year is our estimated plastic consumption, 6 789 billion, is the estimated world population (United States Census Bureau, as of October 2009). Our voracious appetite for plastics, coupled with a culture of discarding products that we have chosen for their inherent longevity, is a combination of lethal nature for our environment.

Plastic ocean
Plastic Sea. Photo Source: Coastal wiki

The ultimate symbol of our throwaway lifestyle is the plastic bag: 500 billion to 1 trillion plastic bags is the number consumed annually, which is about a million a minute. The production of plastic bags creates enough solid waste per year to fill the Empire State Building two and a half times. The petroleum used to make only 14 plastic bags could drive a car 1 mile.

Plastic bags are commonly found in waterways, on beaches, and in other unofficial dumping sites across China, for instance. Litter caused by the notorious bags has been referred to as “white pollution.”

In the United States, however, measures to ban or curtail the use of plastic bags have met with official resistance. With its powerful lobby, the plastics industry argues that jobs will disappear. The industry employs some two million workers. Americans alone throw out at least 100 billion bags a year, the equivalent of throwing away 12 million gallons of oil, which seems an intolerable waste. Until the U.S. follows the lead of San Francisco, China, Ireland, Uganda, South Africa, Russia, and Hong Kong and targets the reduction of plastic bags using legislature, we each need to make a conscious choice and refuse to use it.

The core of the plastic waste instillation in world’s oceans is primarily rooted in poor practices of solid waste management, a lack of infrastructure, various human activities, an inadequate understanding on the part of the public of the potential consequences of their actions, the lack of adequate legal and enforcement systems nationally and internationally, and a lack of financial resources affected to the cause. Mainly a consensus needs to happen, as a culture of behavioral changes needs to be promoted.

The four main land-sources of plastics debris have been identified as:

  • Shoreline And Recreational Activities Related Litter

    This includes: bags, balloons, beverages bottles, cans, caps, lids, shoes, cups, plates, forks, knives, spoons, food wrappers/containers, six-pack holders, pull tabs, shotgun shells/wadding, straws, stirrers, toys, medical hygiene (condom, syringe), drug and smoking paraphernalia (The filters are made of cellulose acetate, a synthetic polymer (fiber) that can last for many years in the environment), and 55 gallons drums. All this land-based debris blows, washes, or is discharged into the water from land areas after people engaged in beach-going activities have discarded it.

    Branscombe
    Branscombe, United Kingdom, Photo: Matt Cardy

    About 80 percent of all tourist flock to coastal areas. Massive influxes of tourists, often to a relatively small area, have a huge impact, adding to the pollution of the local population, putting local infrastructure and habitats under enormous pressure. For example, 85 percent of the 1.8 million people who visit Australia’s Great Barrier Reef are concentrated in two small areas, Cairns and the Whitsunday Islands, which together have a human population of just 130,000 or so, WWF reported.

    Shoreline activities account for 58 percent of the marine litter in the Baltic Sea region and almost half in Japan and the Republic of Korea. In Jordan, recreational activities contribute up to 67 percent of the total discharge of marine litter. This is a particularly big problem in the East Asian Seas region – home to 1.8 billion people, 60 percent of whom live in coastal areas – with its fast growing shipping and industrial development. Other emerging hotspots include the oil-boom coasts of the Caspian and the littoral states of Iran and Azerbaijan.

    In South Asia, the growing ship-breaking industry has become a major source of marine debris. In Gujarat, India – one of the largest and busiest ship-breaking yards in the world – operations are carried out on a 10-kilometer stretch on the beaches of Alang, generating peeled-off paint chips and other types of non-degradable solid waste making its way into the sea.

  • Sewage (Waste Waters Containing Plastic Type Products, Rivers, Waterways)

    Under normal, dry weather conditions, most wastes are screened out of sewage in countries that do apply strict sewage treatment. However, materials can bypass treatment systems and enter waterways when rain levels exceed sewage treatment facilities’ handling capacity. During these times, sewage overflows occur.

    The Yamuna River, which flows 855 miles from the Himalayas into the Ganges, is one of India’s most, but not only, polluted river. The Centre for Science and Environment says that nearly 80 percent of the river’s pollution is the result of sewage. Combined with industrial runoff, that comes to more than three billion liters of waste per day, a quantity well beyond the river’s assimilative capacity. Many Indian rivers are so polluted they exceed permissible levels for safe bathing.

    Yamuna River in New Delhi
    Yamuna River in New Delhi. Photo: Manan Vastsyayana

    It has been reported that the lack of adequate solid waste management facilities results in hazardous wastes entering the waters of the Western Indian Ocean, South Asian Seas, and southern Black Sea, among others.

  • Fishing Related Debris

    marine debris net

     

    Photo: ©© Jan Vozenilek-05-0924 / The Midway Journey

    Dumping, wastes from ships, boats platforms (20%). Derraik (2002) stated that ships are estimated to dump 6.5 million tons of plastic a year. An estimated fourth fifths of the oceanic debris is litter blown seaward from landfills and urban runoff washed down storm drains. (Unep). Clean up on land where 80 percent of the plastic debris originates is thus the primarily obvious answer.

Manual Clean Up

The simplest, yet highly effective, action is the manual clean up of the beaches, coasts, rivers, lands and estuaries.

National and international manual clean-up operations of shorelines and sea floor are in existence.

For instance, the past 20 years, the Japan Environmental Action Network (JEAN) has been organizing a yearly beach cleanup and survey.

On an international level, the International Coastal Cleanup (ICC) was installed. The International Coastal Cleanup (ICC) engages the public to remove trash and debris from the world’s beaches and waterways, to identify the sources of debris, and to change the behaviors that cause pollution. The origins of the ICC began in 1985 with research conducted by The Ocean Conservancy (then known as the Center for Marine Conservation – CMC) on plastics in the marine environment. Contracted by the U.S. Environmental Protection Agency, Office of Toxic Substances, the CMC produced the report Plastics in the Ocean: More Than a Litter Problem, which was the first study to identify plastics as a significant marine debris hazard. The data collected and analyzed from the annual ICC Cleanup is used locally, nationally and internationally to influence policy decisions, spawn campaigns for recycling programs, support public education programs, launch adopt-a-beach programs, and even storm water system overhaul and legislative reform.

The Clean Up the World program is run in conjunction with UNEP. It engages more than 40 million people from 120 different countries in clean up operations.

Hawaiin shores
Hawaiin shores. Photo Source: epa.gov

As part of its Rise Above Plastics campaign, Surfrider foundation is hosting frequent beach clean-ups; it is an example of an encouraging trend towards collective awareness and action to solve the problem at its source.

Worldwide private groups and associations are more and more aware that clean-up does need to happen, one day at a time, one person at a time.

Cleaning Up Of The Oceans Debris In The Open Seas

NOAA has also been contacted regarding cleanup of the debris directly in the garbage patch and other areas of the North Pacific; however, cleanup is likely to be more difficult than it may seem. “If only things were that simple. We could just go out there and scoop up an island,” says Holly Bamford, director of NOAA’s marine debris program. “If it was one big mass, it would make our jobs a whole lot easier.” It’s like a galaxy of garbage, populated by billions of smaller trash islands that may be hidden underwater or spread out over many miles.

Furthermore, in some areas where marine debris concentrates so does marine life, such as in the STCZ. This makes simple scooping up of the material risky, more harm than good may be caused. Straining ocean waters for plastics would capture the plankton that is the base of the marine food web and responsible for 50 percent of the photosynthesis on Earth. (NOAA).

As Captain Charles Moore once said: the cleaning up effort of the oceanic garbage patches “would bankrupt any country and kill wildlife in the nets as it went.”

However, confident in the future and investigating new horizons, Doug Woodring, from Project Kaisei, will be producing a documentary for National Geographic testing catch techniques for the plastic waste (“we know not all can be caught, but some can for sure”), at least for the largest debris that we know do decompose over time and actually more rapidly than previously thought.

Marine debris accumulation
Marine debris accumulation, on seafloor. Photo Source: NOAA

The clean up operation is the most immediate, highly effective, and simplest, action/plan that we, the problem, can undertake right now to contribute to the solution. It is a great starting point for a fundamental cultural change that need to occur, which is part of a major consensus.

David

WHEN THE MERMAIDS CRY – FACTS ABOUT PLASTIC

FACTS ABOUT PLASTIC

What Is Plastic?

A simple definition could be: any of a group of synthetic or natural organic materials that may be shaped when soft and then hardened, including many types of resins, resinoids, polymers, cellulose derivatives, casein materials, and proteins: used in place of other materials, as glass, wood, and metals, in construction and decoration, for making many articles, as coatings, and, drawn into filaments, for weaving. They are often known by trademark names, as Bakelite, Vinylite, or Lucite.

In chemistry, plastics are large molecules, called polymers, composed of repeated segments, called monomers, with carbon backbones. A polymer is simply a very large molecule made up of many smaller units joined together, generally end to end, to create a long chain. The smallest building block of a polymer is called a monomer. Polymers are divided into two distinct groups: thermoplastics (moldable) and thermosets (not). The word “plastics” generally applies to the synthetic products of chemistry.

Alexander Parkes created the first man-made plastic and publicly demonstrated it at the 1862 Great International Exhibition in London. The material, called parkesine, was an organic material derived from cellulose that, once heated, could be molded and retained its shape when cooled.
Many, but not all, plastic products have a number – the resin identification code – molded, formed or imprinted in or on the container, often on the bottom. This system of coding was developed in 1988 by the U.S.-based Society of the Plastics Industry to facilitate the recycling of post-consumer plastics. It is indeed, quite interesting to go through the fine lines.

  1. Polyethylene terephthalate (PET or PETE) – Used in soft drink, juice, water, beer, mouthwash, peanut butter, salad dressing, detergent, and cleaner containers. Leaches antimony trioxide and (2ethylhexyl) phthalate (DEHP).
  2. DEHP is an endocrine disruptor that mimics the female hormone estrogen. It has been strongly linked to asthma and allergies in children. It may cause certain types of cancer and it has been linked to negative effects on the liver, kidney, spleen, bone formation, and body weight. In Europe, DEHP has been banned since 1999 from use in plastic toys for children under the age of three.
  3. High-density polyethylene (HDPE) – Used in opaque milk, water, and juice containers, bleach, detergent and shampoo bottles, garbage bags, yogurt and margarine tubs, and cereal box liners. Considered a safer plastic. Research on risks associated with this type of plastic is ongoing.
  4. Polyvinyl chloride (V or Vinyl or PVC) – Used in toys, clear food and non-food packaging (e.g., cling wrap), some squeeze bottles, shampoo bottles, cooking oil and peanut butter jars, detergent and window cleaner bottles, shower curtains, medical tubing, and numerous construction products (e.g., pipes, siding). PVC has been described as one of the most hazardous consumer products ever created. Leaches di (2-ethylhexyl) phthalate (DEHP) or butyl benzyl phthalate (BBzP), depending on which is used as the plasticizer or softener (usually DEHP). DEHP and BBzP are endocrine disruptors mimicking the female hormone estrogen; have been strongly linked to asthma and allergic symptoms in children; may cause certain types of cancer; and linked to negative effects on the liver, kidney, spleen, bone formation, and body weight. In Europe, DEHP, BBzP, and other dangerous phthalates have been banned from use in plastic toys for children under three since 1999. Not so elsewhere, including Canada and the United States.
    Dioxins are unintentionally, but unavoidably, produced during the manufacture of materials containing chlorine, including PVC and other chlorinated plastic feedstocks. Dioxin is a known human carcinogen and the most potent synthetic carcinogen ever tested in laboratory animals. A characterization by the National Institute of Standards and Technology of cancer causing potential evaluated dioxin as over 10,000 times more potent than the next highest chemical (diethanol amine), half a million times more than arsenic, and a million or more times greater than all others.
  5. Low-density polyethylene (LDPE) – Used in grocery store, dry cleaning, bread and frozen food bags, most plastic wraps, and squeezable bottles (honey, mustard). Considered a safer plastic. Research on risks associated with this type of plastic is ongoing.
  6. Polypropylene (PP) – Used in ketchup bottles, yogurt and margarine tubs, medicine and syrup bottles, straws, and Rubbermaid and other opaque plastic containers, including baby bottles. Considered a safer plastic. Research on risks associated with this type of plastic is ongoing.
  7. Polystyrene (PS) – Used in Styrofoam containers, egg cartons, disposable cups and bowls, take-out food containers, plastic cutlery, and compact disc cases. Leaches styrene, an endocrine disruptor mimicking the female hormone estrogen, and thus has the potential to cause reproductive and developmental problems. Long-term exposure by workers has shown brain and nervous system effects and adverse effects on red blood cells, liver, kidneys, and stomach in animal studies. Also present in secondhand cigarette smoke, off gassing of building materials, car exhaust, and possibly drinking water. Styrene migrates significantly from polystyrene containers into the container’s contents when oily foods are heated in such containers.
  8. Other – This is a catchall category that includes anything that does not come within the other six categories. As such, one must be careful in interpreting this category because it includes polycarbonate – a dangerous plastic – but it also includes the new, safer, biodegradable bio-based plastics made from renewable resources such as corn and potato starch and sugar cane. Polycarbonate is used in many plastic baby bottles, clear plastic sippy cups, sports water bottles, three and five gallon large water storage containers, metal food can liners, some juice and ketchup containers, compact discs, cell phones, computers. Polycarbonate leaches Bisphenol A (some effects described above) and numerous studies have indicated a wide array of possible adverse effects from low-level exposure to Bisphenol A: chromosome damage in female ovaries, decreased sperm production in males, early onset of puberty, various behavioral changes, altered immune function, and sex reversal in frogs.

Rob Krebs of the American Plastics Council notes that people value plastics for exactly what creates the most problems at sea and on lands: their durability.

Plastic debris, of all sizes and shapes, is a transboundary pollution problem with a powerful vehicle, the ocean.


Vacha Dam near town of Krichim, April 25, 2009. Photo: Dimitar Dilkoff

BUOYANCY

Plastics travel long distances. Their distribution in the oceans isn’t uniform, yet they are omnipresent from the Polar Regions to the Equator. Scientists are still refining methods to detect and analyze the materials. A good example of plastic debris’ buoyancy is as follows. In 1992, twenty containers full of rubber ducks were lost overboard from a ship traveling from China to Seattle. By 1994, some had been tracked to Alaska, while others reached Iceland in 2000. The ducks (with a distinctive logo on their base) have been sighted in the Arctic, Pacific and Atlantic Oceans (Ebbesmeyer, 2003).

PHOTODEGRADATION VS. BIODEGRADATION

Plastic is generally a durable material. Its durability has made the culprit of the problem since it is considered resistant to natural biodegradation processes, i.e. the microbes that break down other substances do not recognize plastic as food. Yet plastic can be fragmented with the effects of UV, being broken down by light in smaller and smaller debris over time.

Biodegradation, the breaking down of organic substances by natural means, happens all the time in nature. All plant-based, animal-based, or natural mineral-based substances will over time biodegrade. In its natural state raw crude oil will biodegrade, but man-made petrochemical compounds made from oil, such as plastic, will not. Why not? Because plastic is a combination of elements extracted from crude oil then re-mixed up by men in white coats. Because these combinations are man made they are unknown to nature. Consequently, it has been thought that there is no natural system to break them down. The enzymes and the micro organisms responsible for breaking down organic materials that occur naturally such as plants, dead animals, rocks and minerals, don’t recognize them. This means that plastic products are said indestructible, in a biodegradable sense at least.


Indian Beach, Nariman Point, Mumbai. Photo source: ©© Shreyans Bhansali

In sum, as time passes, we know that plastic will eventually photo-degrade, i.e. break down into smaller and smaller fragments by exposure to the sun. The photo-degradation process continues down to the molecular level, yet photo-degraded plastic remains a polymer. No matter how small the pieces, they are still and always will be plastic, i.e. they are not absorbed into or changed by natural processes. At sea, the plastic fragmentation process occurs as well, due to wave, sand action, and oxidation. Estimates for plastic degradation at sea has been ranged from 450 to 1,000 years.

Of particular concern are the floating small plastic fragments often referred in the media to as mermaids’ tears, which are tiny nurdles of raw plastic resin that form the building material of every manufactured plastic product, or are granules of domestic waste that have fragmented over the years. Dr Richard Thompson of the University of Plymouth, UK has identified plastic particles thinner than the diameter of a human hair. But while they cannot be seen, those pieces are still there and are still plastic. Not absorbed into the natural system, they just float around within it. He estimates that there are 100,000 particles of plastic per sq km of seabed and 300,000 items of plastic per sq km of sea surface.

Either way, mermaid tears, or fragmented plastic debris, reaching microscopic size over time, remain everywhere and are almost impossible to clean up. They are light enough to float in the wind, landing in the earth’s oceans. Mermaid’s tears are often found in filter feeders like mussels, barnacle, lugworm and amphipods.

Thus, the photo degradation of plastic debris makes the matter worse. Plastic becomes microscopic, invisible, yet ever polluting waters, beaches, coasts, seafloor, being eaten by even tinier marine organisms, therefore entering the food chain insidiously and ineluctably.

TOXIC SPONGE

Corroborating reports and findings worldwide demonstrated that fragmented plastics debris’ increase and massive presence on and off shores does constitute reason for raised worries and awareness.

Studies on small plastic pellet by Dr Richard Thompson and by Hideshige Takada, Yukie Mato professor of organic geochemistry at Tokyo University, have shown that plastic debris meeting other pollutants in the oceans absorbs harmful chemicals from the sea water they float in, acting like a pollution sponges.

These studies have been conducted on plastic nurdles not just because of their uniform size and shape, thus easier to study and compare by scientifics, but also because of their wide spread presence on the world’s beaches.

In UK, mermaid tears are the second common plastic litter found on the beaches according to the Marine Conservation Society’s 2007 data and a Surfers Against Sewage (SAS) report.

According to Charles Moore, these resin pellets account for around 8 percent of annual oil production and are the raw material for the 260 million tons of plastic consumed yearly worldwide. Lightweight and small, they escape in untold volumes during transport and manufacture and wash in the ocean.

Even though these researches have been conducted on nurdles, it is crucial to keep in mind, as Dr. Takada team confirmed, that other types of plastic debris (from fishing gear, shopping bags, to small fragments) displays the exact same propensity as the nurdles of raw plastic resin to absorb toxins.


Nurdles covered beach. Photo Source: Algalita Foundation

Plastic resin pellets are round, shiny and tiny, mostly less than 5mm in diameter. The very structure of the plastic material is oily and greasy (basically plastics are solid oil) therefore promoting the accumulation of hydrophobic contaminants (ones that tend to repel and not absorb water) from the surrounding seawater. Chemicals like PCB’s and DDE are very hydrophobic. It was shown that plastic pellets suck up these dangerous persistent organic pollutants (POPs) and toxins with a concentration factor that’s almost 1 million times greater compared to the overall concentration of the chemicals in seawater. In other words, waterborne hydrophobic pollutants do collect and magnify on the surface of plastic debris, thus making plastic far more deadly in the ocean than it would be on land.

These findings, published in the Marine Pollution Bulletin, were based on samples gathered from 30 beaches in 17 countries. PCB (Polychlorinated biphenyls) pollutant concentrations on plastic pellet were highest on US coasts, followed by Western Europe and Japan. The highest concentrations of DDT (Dichlorodiphenyltrichloroethane), the most toxic of all pesticides, were found on the US west coast and Vietnam.

Plastic marine debris, thought to be “indestructible”, “lasting forever”, has been shown to decompose faster than previously thought, under unexpected conditions (in the water and at sea temperature) and, most importantly, releasing toxic substances not found in the natural element: seawater.

DECOMPOSE

Since plastics belong to a chemical family of high polymers, they are essentially made up of a long chain of molecules containing repeated units of carbon atoms. Because of this inherent molecular stability (high molecular weight), plastics do not easily breakdown into simpler components.


North America, touched landscape. Photo Source: photobucket

Plastics do decompose, though not fully, over a very long period of time (in average 100 to 500 years). Commercially available plastics (polyolefins like polyethylene, polypropylene, etc.) have been further made resistant to decomposition by means of additional stabilizers like antioxidants. Thus, unless the plastic is specially designed to decompose in the soil, such materials can last a very long time because the chemical bonds that hold the molecules together are often stronger than nature’s power to take them apart. This means that soil microorganisms that can easily attack and decompose things like wood and other formerly living materials cannot break the various kinds of strong bonds that are common to most plastics. This depends upon the plastic (polymer) and the environment to which it is exposed.

The Marine Conservancy has published that the estimated decomposition rates of most plastic debris found on coasts are:

  • Foamed plastic cups: 50 years
  • Plastic beverage holder: 400 years
  • Disposable diapers: 450 year
  • Plastic bottle: 450
  • Fishing line: 600 years.

Until Dr. Saido’s report, no studies had been conducted on plastic decomposition at low temperature in the marine environment, owing to the mistaken conception that plastic does practically not decompose in such condition. In the first study to look at what happens over the years to the billions of pounds of plastic waste drifting in the world’s oceans, researchers, lead by Katsuhiko Saido, PhD, reported that plastic does “decompose with surprising speed (as little as a year) and release potentially toxic substances into the water.”

These findings were reported on August 19, 2009, at the 238th National Meeting of the American Chemical Society (ACS). The scientists there termed the discovery “surprising.”

Dr. Saido described a new method to simulate the breakdown of plastic products at low temperatures (30º Celsius, 86º F), such as those found in some oceans. David Barnes, marine ecologist from the British Antarctic Survey, expressed that the Japanese’s team lab results cannot be applied uniformly across the ocean. However, even though the decomposition process would not occur in much cooler seawater as Barnes mentioned, the oceans are vast, currents are constant and permanent, nothing stays static and furthermore, it seems that garbage patches where plastics accumulate, are to be found in even greater dimension in the South Gyres, in the tropical and sub tropical zones with very warm waters. One of the researchers stated: “Even at 30 degrees Celsius, the plastic decomposes. In natural conditions, the tide comes in and sunlight heats the plastics [which increases decomposition].”

The type of plastic studied by Saido’s team was polystyrene, a white foamed plastic, commonly known by the trademark Styrofoam.

The process involved modeling plastic decomposition at room temperature, removing heat from the plastic and then using a liquid to extract the BPA and PS Oligomer that are not found naturally, thus must have been created through the decomposition of the plastic. Once degraded, the plastic was shown to release three new compounds not found in nature: styrene monomer (SM), styrene dimer (SD) and styrene trimer (ST). While SM is already a known carcinogen, SD and ST are suspected to be as well.

Plastics are not metabolized subsequent to ingestion since they are polymers. On the other hand, low molecular compounds such as PS oligomer or BPA from plastic decomposition are toxic and can be metabolized!

Samples of sea sand and seawater collected from Europe, India, Japan and the Pacific Ocean were found to be contaminated, with up to 150 parts per million of some of these components of plastic decomposition.
“Plastics in daily use are generally assumed to be quite stable,” said study lead researcher Katsuhiko Saido, Ph.D. “We found that plastic in the ocean actually decomposes as it is exposed to the rain and sun and other environmental conditions, giving rise to yet another source of global contamination that will continue into the future.”

This latest study clearly shows new micro-pollution by compounds generated by plastic decomposition to be taking place out of sight in the ocean, leaching toxic chemicals such as Bisphenol A (BPA) and derivatives of polystyrene.

Even though present in seawater and sands, the pollutants are found in highest concentration in areas heavily littered with plastic debris, such as ocean vortices, which bring us to define more specifically the notion of gyres and “garbage patches”.

David

WHEN THE MERMAIDS CRY – MAGNITUDE, SCOPE, EXTENT

I: THE GREAT PLASTIC TIDE: MAGNITUDE, SCOPE, EXTENT

A full understanding of the magnitude and scope of this plastic pollution starts with clear definitions as to what and why it is happening. Thus, we will define the notions of marine debris, gyres, and oceanic garbage patches, or giant floating marine debris field, as first discovered in the North Pacific by Captain Charles Moore’s, since referred to as The Great Pacific Garbage Patch (GGP).

MARINE DEBRIS AND PLASTIC


Krichim, Boat in plastic, April 25, 2009. Photo: Dimitar Dilkoff

Marine Debris

The term marine debris has been used for at least 25 years to refer to man-made materials that have been discarded or lost into the ocean. The earliest references come from the 1984 Workshop on the Impacts and Fate of Marine Debris (Shomura and Yoshida 1985). This workshop came out of a 1982 request from the Marine Mammal Commission to the National Marine Fisheries Service to examine the impacts of marine debris. At that time, the focus of research was primarily on derelict fishing gear. Keep in mind that this was prior to the implementation of both the high-seas driftnet ban and MARPOL Annex V.

Other terms used prior to 1984 include the following: man-made debris (Feder et all 1978), synthetic debris (Balazs 1979), plastic litter (Merrell 1980), floating plastic debris (Morris 1980), man-made objects (Shaughnessy 1980, Venrick et al 1973), and debris (Scordino and Fisher 1983).

It would appear that the term debris was being used in these articles by academics as something discarded: litter.

 

Mouth of the Los Angeles River, Long Beach, California. Photo source: ©© Bill McDonald, Algalita Foundation / Heal The Bay

The term marine debris encompasses more than plastic, including metals (derelict vessels, dumped vehicles, beverage containers), glass (light bulbs, beverage containers, older fishing floats), and other materials (rubber, textiles, lumber). Plastic certainly makes up the majority of floating litter, but in some areas the debris on the ocean floor may contain sizeable amounts of those other denser types.

Scientists have similarly and more simply defined marine debris as, any manufactured or processed solid waste material that enters the ocean environment from any source (Coe & Rogers, 1997). Marine debris is definitely characterized as human-created waste that has deliberately or accidentally become afloat. They tend to accumulate at the centre of gyres and on coastlines, frequently washing aground where it is known as beach litter.

The US Congress passed a bill in 2006, The Marine Debris Research, Prevention, and Reduction Act, to create a program to address the marine debris pollution. One of the requirements in the bill was for NOAA (National Oceanic and Atmospheric Administration) and the U.S. Coast Guard, to promulgate a definition of marine debris for the purposes of the Act. Thus, USCG and NOAA drafted and published a definition of marine debris in September 2009. The definition is this: “Any persistent solid material that is manufactured or processed and directly or indirectly, intentionally or unintentionally, disposed of or abandoned into the marine environment or the Great Lakes.” Marine debris can come in many forms, from a plastic soda bottle to a derelict vessel. Types and components of marine debris include plastics, glass, metal, Styrofoam, rubber, derelict fishing gear, and derelict vessels.

UNEP has defined marine debris, or marine litter, as “any persistent, manufactured, processed, or solid material discarded, disposed of, or abandoned in the marine and coastal environment.” This is an even more global and comprehensive definition, as it does include the marine and correlated coastal impact of the aforementioned litter.

 

Plastic pollution covering the shore, Morocco.Photo: © SAF — Coastal Care

As we mentioned supra, land-based sources of debris account for up to 80 percent of the world’s marine pollution. Such debris is unquestionably one of the world’s most pervasive pollution problems affecting our beaches, coasts, oceans, seafloors, inland waterways and lands. It affects the economies and inhabitants of coastal and waterside communities worldwide. The effect of coastal littering is obviously compounded by vectors, such as rivers and storm drains, discharging litter from inland urban areas. Obviously, ocean current patterns, climate and tides, and proximity to urban centers, industrial and recreational areas, shipping lanes, and commercial fishing grounds influence the types and amount of debris that is found in the open ocean or collected along beaches, coasts and waterways, above and below the water’s edge.

The other 20 percent of this debris is from dumping activities on the water, including vessels (from small power and sailboats to large transport ships carrying people and goods), offshore drilling rigs and platforms, and fishing piers.

Over the past 60 years, organic materials, once the most common form of debris, have yielded to synthetic elements as the most abundant material in solid waste. Marine litter is now 60 to 80 percent plastic, reaching 95 percent in some areas, according to a report by the Algalita Marine Research Foundation (created by Charles Moore), published in October 2008 in Environmental Research.


Citarum River, flowing to the Sea, is the main source of houselhold water for Jakarta.(14million people). Photo source: photobucket

Around and around, worldwide, at distant seas, or merely bobbing among the waves before washing up ultimately on shore, a daily and ever too common plastic spectacle is unveiled: bottles, plastic bags, fishnets, clothing, lighters, tires, polystyrene, containers, plastics shoes, just a myriad of man-made items, all sharing a common origin: us.

Yearly data adds to the despondent reality of how extensively the plastic tide is increasingly affecting world’s beaches and coasts. Launched in 1986 by the Ocean Conservancy, the Center for Marine Conservation’s annual International Coastal Cleanup (ICC) has grown into the world’s largest volunteer effort to collect data on the marine environment. Held the third Saturday of each September, the International Coastal Cleanup engages the public to remove trash and debris from the coasts, beaches, waterways, underwater, and on lands to identify the sources of debris. It is a compelling global snapshot of marine debris collected on one day at thousands of sites all over the world. The 2008, 23rd ICC reported that 104 countries and locations, from Bahrain to Bangladesh, and in 42 US States, from southern California to the rocky coast of Maine, had participated. The overwhelming percentage of debris collected was plastics and smoking paraphernalia. The 2008 report states that plastic litter has increased by 126 percent since ICC first survey in 1994. The top 3 items found in 2008 were cigarettes butts, plastic bags, and food wrappers/containers.

Durable and slow to degrade, plastic materials that are used in the production of so many products, from containers for beverage bottles, packing straps and tarps, and synthetic nylon materials used in fishing line, all become debris with staying power. Plastics debris accumulates because it does not biodegrade as many other substances do; although it will photo degrade on exposure to sunlight and does decompose, more rapidly than previously thought. (We will explain these processes as we study the nature and properties of plastic itself infra.).

In addition, most of these plastic waste items are highly buoyant, allowing them to travel in currents for thousands of miles, endangering marine ecosystems and wildlife along the way. Marine debris is a global transboundary pollution problem.


Icelandic shore. The marine area around Iceland is considered as one of the cleanest of the world. Photo Source: Clean up the Coastline, Veraldarvinir

The instillation of plastic in an oceanic world vests a terrible reality. Because of the properties of plastic as a synthetic material and because of the absence of boundary, vastness, currents and winds at seas, this resilient polluting material is being spread worldwide by an even more powerful vehicle, the seas. It appears then daunting, impossible, a priori, to control, efficiently clean-up, remedy effectively, even sufficiently study the plastic pollution. This unwilling confrontation of titans, one plastic the other oceanic, has become ineluctably a crisis of massive proportion.

Plastic

The paucity of concerted and definitive scientific data/research in this matter is staggering compared to the extent of the problem.
Only in 1997, with Captain Charles Moore’s discovery, was the plastic waste pollution in the ocean widely brought to media light and finally began to receive more serious attention from the public and the scientific world, stepping the way to more exhaustive research about plastic and its consequences and effects when entering marine life.

Of the 260 million tons of plastic the world produces each year, about 10 percent ends up in the Ocean, according to a Greenpeace report (Plastic Debris in the World’s Oceans, 2006). Seventy percent of the mass eventually sinks, damaging life on the seabed. The rest floats in open seas, often ending up in gyres, circular motion of currents, forming conglomerations of swirling plastic trash called garbage patches, or ultimately ending up washed ashore on someone’s beach.

But the washed up or floating plastic pollution is a lot more than an eyesore or a choking/entanglement hazard for marine animals or birds. Once plastic debris enters the water, it becomes one of the most pervasive problems because of plastic’s inherent properties: buoyancy, durability (slow photo degradation), propensity to absorb waterborne pollutants, its ability to get fragmented in microscopic pieces, and more importantly, its proven possibility to decompose, leaching toxic Bisphenol A (BPA) and other toxins in the seawater.

“Plastics are a contaminant that goes beyond the visual”, says Bill Henry of the Long Marine Laboratory, UCSC.

 

Seal trapped in plastic pollution. Photo: ©© Tedxgp2

But before we develop further the realities and consequences of the plastic-covered beaches, seafloor and plastic-instilled seawater, it is necessary to present simple facts about plastic itself.

David

WHEN THE MERMAIDS CRY: THE GREAT PLASTIC TIDE – INTRODUCTION

By Claire Le Guern
Last updated in March 2018.

INTRODUCTION

The world population is living, working, vacationing, increasingly conglomerating along the coasts, and standing on the front row of the greatest, most unprecedented, plastic waste tide ever faced.

Washed out on our coasts in obvious and clearly visible form, the plastic pollution spectacle blatantly unveiling on our beaches is only the prelude of the greater story that unfolded further away in the world’s oceans, yet mostly originating from where we stand: the land.

For more than 50 years, global production and consumption of plastics have continued to rise. An estimated 299 million tons of plastics were produced in 2013, representing a 4 percent increase over 2012, and confirming and upward trend over the past years.(See: Worldwatch Institute – January 2015). In 2008, our global plastic consumption worldwide has been estimated at 260 million tons, and, according to a 2012 report by Global Industry Analysts, plastic consumption is to reach 297.5 million tons by the end of 2015.

Plastic is versatile, lightweight, flexible, moisture resistant, strong, and relatively inexpensive. Those are the attractive qualities that lead us, around the world, to such a voracious appetite and over-consumption of plastic goods. However, durable and very slow to degrade, plastic materials that are used in the production of so many products all, ultimately, become waste with staying power. Our tremendous attraction to plastic, coupled with an undeniable behavioral propensity of increasingly over-consuming, discarding, littering and thus polluting, has become a combination of lethal nature.

Although inhabited and remote, South Sentinel island is covered with plastic! Plastic pollution and marine debris, South Sentinel Island, Bay of Bengal. Photo source: © SAF — Coastal Care

A simple walk on any beach, anywhere, and the plastic waste spectacle is present. All over the world the statistics are ever growing, staggeringly. Tons of plastic debris (which by definition are waste that can vary in size from large containers, fishing nets to microscopic plastic pellets or even particles) is discarded every year, everywhere, polluting lands, rivers, coasts, beaches, and oceans.

Published in the journal Science in February 2015, a study conducted by a scientific working group at UC Santa Barbara’s National Center for Ecological Analysis and Synthesis (NCEAS), quantified the input of plastic waste from land into the ocean. The results: every year, 8 million metric tons of plastic end up in our oceans. It’s equivalent to five grocery bags filled with plastic for every foot of coastline in the world. In 2025, the annual input is estimated to be about twice greater, or 10 bags full of plastic per foot of coastline. So the cumulative input for 2025 would be nearly 20 times the 8 million metric tons estimate – 100 bags of plastic per foot of coastline in the world!

Lying halfway between Asia and North America, north of the Hawaiian archipelago, and surrounded by water for thousands of miles on all sides, the Midway Atoll is about as remote as a place can get. However, Midways’ isolation has not spared it from the great plastic tide either, receiving massive quantities of plastic debris, shot out from the North Pacific circular motion of currents (gyre). Midways’ beaches, covered with large debris and millions of plastic particles in place of the sand, are suffocating, envenomed by the slow plastic poison continuously washing ashore.

Then, on shore, the spectacle becomes even more poignant, as thousands of bird corpses rest on these beaches, piles of colorful plastic remaining where there stomachs had been. In some cases, the skeleton had entirely biodegraded; yet the stomach-size plastic piles are still present, intact. Witnesses have watched in horror seabirds choosing plastic pieces, red, pink, brown and blue, because of their similarity to their own food. It is estimated that of the 1.5 million Laysan Albatrosses which inhabit Midway, all of them have plastic in their digestive system; for one third of the chicks, the plastic blockage is deadly, coining Midway Atoll as “albatross graveyards” by five media artists, led by photographer Chris Jordan, who recently filmed and photographed the catastrophic effects of the plastic pollution there.

Albatross, victim of plastic ingestion. Photo: Unknown.

From the whale, sea lions, and birds to the microscopic organisms called zooplankton, plastic has been, and is, greatly affecting marine life on shore and off shore. In a 2006 report, Plastic Debris in the World’s Oceans, Greenpeace stated that at least 267 different animal species are known to have suffered from entanglement and ingestion of plastic debris. According to the National Oceanographic and Atmospheric Administration, plastic debris kills an estimated 100,000 marine mammals annually, as well as millions of birds and fishes.

The United Nations Joint Group of Experts on the Scientific Aspects of Marine Pollution (GESAMP), estimated that land-based sources account for up to 80 percent of the world’s marine pollution, 60 to 95 percent of the waste being plastics debris.

However, most of the littered plastic waste worldwide ultimately ends up at sea. Swirled by currents, plastic litter accumulates over time at the center of major ocean vortices forming “garbage patches”, i.e. larges masses of ever-accumulating floating debris fields across the seas. The most well known of these “garbage patches” is the Great North Pacific Garbage Patch, discovered and brought to media and public attention in 1997 by Captain Charles Moore. Yet some others large garbage patches are highly expected to be discovered elsewhere, as we’ll see further.

The plastic waste tide we are faced with is not only obvious for us to clearly see washed up on shore or bobbing at sea. Most disconcertingly, the overwhelming amount and mass of marine plastic debris is beyond visual, made of microscopic range fragmented plastic debris that cannot be just scooped out of the ocean.

Slow, silent, omnipresent, ever increasing, more toxic than previously thought, the plastic pollution’s reality bears sobering consequences, as recently unveiled by the report of Japanese chemist Katsuhiko Saido at the 238th National Meeting of the American Chemical Society (ACS) in August 2009 and the findings from the Project Kaisei and Scripps (Seaplex) scientific cruise-expeditions collecting seawater samples from the Great Garbage Patch. Both, the reports and expeditions uncovered new evidence of how vast and “surprisingly” (as it was termed at the ACS meeting) toxic the plastic presence in the marine environment is.

 

Extremely littered beach in northern Norway. Photo source: ©© Bo Eide

Environmentalists have long denounced plastic as a long-lasting pollutant that does not fully break down, in other terms, not biodegradable. In 2004, a study lead by Dr Richard Thompson at the University of Plymouth, UK, reported finding great amount of plastic particles on beaches and waters in Europe, the Americas, Australia, Africa and Antarctica. They reported that small plastic pellets called “mermaids tears”, which are the result of industry and domestic plastic waste, have indeed spread across the world’s seas. Some plastic pellets had fragmented to particles thinner than the diameter of a human hair. But while some cannot be seen, those pieces are still there and are still plastic. They are not absorbed into the natural system, they just float around within it, and ultimately are ingested by marine animals and zooplankton (Plankton that consists of tiny animals, such as rotifers, copepods, and krill, larger animals eggs and larvae’s and of microorganisms once classified as animals, such as dinoflagellates and other protozoans.). This plastic micro-pollution, with its inherent toxicity and consequences on the food chain, had yet to be studied…

Dr Saido’s study was the first one to look at what actually happens over the years to these tons of plastic waste floating in the world’s oceans. The study presents an alarming fact: these tons of plastic waste reputed to be virtually indestructible, do decompose with surprising speed, at much lower temperature than previously thought possible, and release toxic substances into the seawater, namely bisphenol A (BPA) and PS oligomer. These chemicals are considered toxic and can be metabolized subsequent to ingestion, leading Dr Saido to state “…plastics in the ocean will certainly give rise to new sources of global contaminations that will persist long into the future”.

This past August a different study, from a group of oceanography students from Scripps Institution of Oceanography (SIO), UCSD, accompanied by the international organization Project Kaisei’s team, embarked on two vessels, New Horizon and Kaisei, through the North Pacific Ocean to sample plastic debris and garbage. SIO director Tony Haymet described the trip as “ …a forage into the great plastic garbage patch in the north.” To summarize the scientific data collected on the ship, Miriam Goldstein, chief scientist on New Horizon, stated: “We did find debris… coming up in our nets in over 100 consecutive net tows over a distance of 1,700 miles… It is pretty shocking.” She said, “[There is] not a big island, not a garbage dump [that we] can really see easily.” She described it more as a place where large debris floats by a ship only occasionally, but a lot of tiny pieces of plastic exist below the surface of the water. “Ocean pretty much looks like ocean,” she said. “The plastic fragments are mostly less than a quarter inch long and are below the surface. It took at first a magnifying-glass to see the true extent of plastic damage in the North Pacific.”

The overwhelmingly largest unquantifiable plastic mass is just made of confetti-like fragmented pieces of plastic.

In a press conference in September 2009, the director of the California Department of Toxic Substances Control (DTSC), Maziar Movassaghi, referring to Project Kaisei’s findings, held a small glass bottle filled with seawater sampled at the Great North Garbage Patch. Inside was murky seawater with hundreds of fragmented plastics pieces: “That is what we have to stop”.

All sea creatures, from the largest to the microscopic organisms, are, at one point or another, swallowing the seawater soup instilled with toxic chemicals from plastic decomposition. The world population “… (is) eating fish that have eaten other fish, which have eaten toxin-saturated plastics. In essence, humans are eating their own waste.” (Dixit Renee Brown, WiredPress).

 

Photo: Manan Vastsyayana

The scientists from Project Kaisei and Scripps hope their data gives clues as to the density and extent of these debris, especially since the Great Pacific Garbage Patch might have company in the Southern Hemisphere, where scientists say the gyre is four times bigger.” We’re afraid at what we’re going to find in the South Gyre, but we’ve got to go there,” said Tony Haymet.

The “Silent World” is shedding mermaid tears. A plastic-poison has undeniably been instilled by us, prompting an unwilling and illegitimate confrontation of two titans: one synthetic (plastic), the other oceanic. The crisis is of massive proportion. An unprecedented plastic tide has occurred, pervasively affecting the world’s oceans, beaches, coasts, seafloor, animals and ultimately, us.

David

The Microplastic Pollution: Causes, Effects, and Can You Stop It?

 
microplastic pollution causes effects and prevention

here is a myriad of studies showing that we live on a plastic planet and this affects everything from natural habitats to human health. While we are (or should be) aware that plastic pollution destroys entire environments, microplastic pollution is a less known phenomenon to the larger public. Many organizations, however, are taking important steps to prevent the damage humanity has already caused. Today we will take a closer look at the microplastic pollution concept, its causes, effects, and the means we have at our disposal to put a stop to it.

What is Microplastic Pollution?

According to the U.S. National Oceanic & Atmospheric Administration, microplastic represents plastic particles, which are less than 5 mm in diameter, and which originate from a variety of sources, including cosmetics, clothing, and industrial processes.

Microplastic particles are currently the subject of two classifications:
  • Primary microplastics: they are purposely manufactured to be microscopic and make the direct result of human material and product use. You can find them in cosmetics or air blasting technology.
  • Secondary microplastics: they are plastic fragments, which derive from the breakdown or fragmentation of larger plastic debris like the macroscopic parts that make up the bulk of the Great Pacific Garbage Patch.

Both types of microplastics persist in the environment at very high levels, particularly in marine ecosystems, together with their larger family members, such as plastic bottles and other products.

According to recent studies and reports, microplastics erode in time to particles as small as 1-100 nm – nano plastics. Using modeling tools, scientists were able to estimate that a total of 15-51 trillion microplastic particles have accumulated in the ocean. While some start as large plastic pieces eroded by water and other elements, others make up the category of “waste by design.” At this point in the story, we have to mention microbeads present in cosmetic products such as exfoliating facewash, soaps and shower creams, toothpaste, body scrubs, and many more. These microbeads are stable and versatile particulates. After we wash them down the drain, these particles are able to evade water filtration systems at water treatment works and go directly into the oceans.

How Much Microplastic do You Eat and Drink?

A study conducted recently showed that we have great reasons for concern when it comes to the microplastic pollution in our own tap water. Researchers tested tap water samples in more than a dozen countries on the globe, only to find that microplastic contamination is present at a global level. The study shows that 83% of the samples presented plastic fibers pollution. The average number of fibers found in each 500 ml sample ranged from 4.8 in the US to 1.9 in Europe.

In other words, microplastic pollution is ubiquitous and has a negative impact on all levels. Since microplastics are present not only in ocean water but it our own treated and filtered tap water, the next logical hypothesis is that we also consume microplastic contaminated fish and marine food.

According to recent research, the problem may be even bigger than ingesting plastics for animals and humans: the microplastics act as carriers by absorbing and concentrating chemicals present in the environment that is persistent, bioaccumulative and toxic, known as PBT compounds. This means, on top of the damage caused by the microplastic particles themselves, harmful chemicals can be carried and released into the body of animals and people.

Scientists also detected microplastic particulates in seafood sold for human consumption, such as mussels, oysters and sea salt. It has been estimated that the average European shellfish consumer could ingest up to 11,000 microplastic particles per year and in Chinese shellfish consumers, it is predicted to be an order of magnitude higher.

While microplastics can pass right through the gut without causing significant health problems for humans and animals, nano-plastics, on the other hand, could pass across the gut in theory. Unfortunately, we do not yet have the means and analytical methods to assess such issues.

Simpler put, microplastic pollution may prove to be even more dangerous in the long term than plastic pollution, because it is invisible and we have yet a lot to study about its long-term impact. Some studies on examining the bodies of beached whales, found large pieces of plastic stuck in the guts of such creatures, but the effect of microplastics, though less obvious, might be just as harmful.

While we need to study oceanic megafauna closer and closer, we also need to understand better the harm we cause by manufacturing microplastics.

The Cosmetic Industry Takes the First Steps to reduce Microplastic Pollution

Cosmetics Europe recommended that by 2020, cosmetic companies phase-out the use of microbeads in their products. According to Chris Flower, director-general of the Cosmetic Toiletry and Perfumery Association, “most companies have completed their phase-out and total usage has already fallen by over 70%. The remainder will do so before the end of 2018, two years ahead of the deadline set by Cosmetics Europe and well before any possible legislative ban could take effect.”

This is among one of the best news out there, but we all have to understand that the cosmetic industry and its exfoliating microbeads are a literal drop of water into an ocean. Cosmetic-derived microplastic pollution it is only a small fraction (0.01-4.1%) of the estimated total level of microplastics in the oceans.

If we put things into perspective, let us all pay attention to the fact that eight trillion microbeads were entering aquatic environments throughout the United States every day back in 2015. This year, marine biologists warned that many species of marine wildlife are already under threat from other problems, such as overfishing and pollution. The added stress from microplastics could push some species further towards extinction, the authors of the study warned.

What can we do about Microplastic Pollution?

The easiest and most mindful way of reducing or pushing the break to microplastic pollution is to stop things at their source. Instead of filling up vast landfills with plastic products, we should reconsider plastic as recyclable, reusable materials. Moreover, the ones responsible for plastic manufacturing should consider bettering the process and turning plastic into a more biodegradable material. Unfortunately, the present biodegradable plastic still persists in the environment for many, many years, so it is not yet the best solution we can come up with.

At a personal level, we can all contribute to reducing the amounts of plastic we use every day. We should all be more mindful of where the plastic we use ends up every day and what plastic products we can give up to without changing our lifestyles and levels of comfort.

Do you have other ideas on how to lower the microplastic pollution and its negative impact on the environment and our health? Besides giving up on certain cosmetic products and using less plastic, what other ways do we have to prevent the planet turning into a plastic landfill?

David

Microplastics In The Bottled Water: Why It Isn’t Safe

Bottled water

(Photo : conger design)

Have you seen tiny bits of plastics in the water that you drink? People who have become aware of the presence of microplastics in the ocean waters must have opted for bottled water, thinking that the packaging has made them so much safer. Sadly, experts say that the problem on microplastics has only gotten worse and that it might have found its way on the water systems, into the homes and perhaps even in sealed bottled water. 

The problem with plastic rests not just on those huge grocery bags that people cannot seem to let go of. Rather, the problem is on those minuscule plastics that have entered the food chain and to an extent even the human body. In the oceans, microplastic pollution has become a cause for concern due to its known harmful effects on marine life in general.

Now, the World Health Organization (WHO) has released a statement that has alarmed the bells for they believe that microplastics have found their way into the water source. Both tap water and bottled water are no longer as safe as they used to be. They revealed this and all the other potential threats that microplastics may have on the human body once ingested in the 124-page report that was published on August 22. 

The report emphasized the need for a better understanding of the health impacts that come with ingesting microplastics into the human body. They also said that there is a need for better screening methods to be in place before microplastics become a health concern.

Dr. Andrew Mayes, a researcher and scientist from the School of Chemistry of the University of East Anglia, said that he welcomes the thought of the presence of microplastics in bottled waters. He devised a method for people to be able to detect if their bottled water contains some form of microplastic. In his interview with Express.co.uk, this chemistry expert explained how it was even possible for bottled waters to be still contaminated. 

"Microplastics are everywhere. They are in the water that we drink and in the air that we breathe. They are everywhere," Dr. Mayes said. 

There is no definite solution to deal with microplastic pollution. The report submitted by the WHO reveals that these come in varying amounts in water, ranging upto 1,000 particles per liter. Can you imagine how many microplastics could be inside your body system now after finishing that liter of water for the day? There may be a little too much it could get you sick.

David

Children of the Trash

Children of the Trash

“Defend the poor and fatherless: do justice to the afflicted and needy. Deliver the poor and needy: rid them out of the hand of the wicked. They know not, neither will they understand; they walk on in darkness: all the foundations of the earth are out of course.”

Psalms 82:3-5

 

All over Haiti, columns of smoke and small fires point to the disastrous conditions of an island with no managed waste disposal. The Haitians burn everything, from plastic bags to tires. This is Truttier Waste Disposal Dump near the giant slums of Cité Soleil; it is the largest landfill site for garbage, including medical and human waste, in all of Haiti.

kids-running-on-garbagepiles3

 

It is located on top of the Plaine Cul-de-Sac Aquifer, the same aquifer that provides fresh water for the capital of Haiti, Port-au-Prince, home to over two million people.

 

The Truttier Waste Disposal Dump is home to hundreds of displaced families, abandoned children, and even babies. They have no hope, no help, and no food. I have never seen such horrible living conditions. The smell is staggering and the flies spread disease throughout the dump where so many people are trying to survive.

family-living-in-dump

 

Many of the people who live in the dump ended up here for many reasons: houses destroyed in the earthquake or lost during hurricanes and tropical storms, escaping the danger and gangs in the slums of Cité Soleil, or they are just so poor, they have nowhere else to go.

houses-in-garbage-dump

 

The children spend their days digging through piles of garbage, alongside the pigs and goats, scavenging for food or anything that they can sell so that they can buy food.

animals-feeding-in-dump2

 

A mother tells me,  “Sometimes garbage trucks will dump trash that has discarded food, and so we take anything we can eat from the trash.”

boy+pig-search-food2

 

Entire families live and work in the dump, day in and day out, gathering any recyclable materials that they can sell.

b&S-garbage-picker

 

Some find discarded clothing to wash and then sell so they can buy food for their family.

washing-clothes

 

It has been six years since the earthquake in Haiti, and trying to find housing and affordable living conditions for the poor is only getting worse. The poorest of the poor sink further into hopelessness every day. The children can only dream of a safe place in this world.

dump-family3

 

Everyday it is the children who suffer the most. All over the city dumps around Port-au-Prince there are hundreds of children in despair as they try to survive on what the dump can produce.

chrildren-sitting-in-despair

 

They struggle for their existence, they are a forgotten people, who work hard to provide for their families, but it’s never enough. My heart breaks for the people of Truttier, especially the children who can see no future.

2-boys-digging-in-dump

 

This is really the “cry of the poor.” Pray that the Lord will give us wisdom to know how to help these children who live in an extremely dangerous area of Haiti with lots of kidnappings, theft and guns.

2-boys-portrait

 

This is just one of the families that live in squalid conditions in the dump. Madamn Pierre Venace, a mother of seven children, is raising her family in a shipping container at the dump because the slums of Cité Soleil became too dangerous with roving street gangs that control the area.

mother-in-hut

 

Her children are sick because they are eating food that they find among the garbage, which she knows is loaded with bacteria, but cannot stop them because they are so hungry. We must bring food to these people!

child-flies-face

 

For many children, this has been their only reality, as they were born among the city’s garbage and have learned to survive in these desperate conditions.

Jonel-Sainfil

 

These young boys go with their mother to scavenge in the dump helping her find items that she can sell, or any scrap of food to fill their empty bellies. They dream of one day going to school.

2-boys-talk

 

The devastating living conditions that these people face every day is not only tragic, but also inhuman. This young boy hopes for the day that he can be with his family and that they could eat every day…

boy-sitting-talking

 

I asked Madamn Pierre Venace, “What is your greatest need?” She looked at me and said, “Food! My children are starving; they never get a full meal. We need food!”  So we are planning on distributing food to this make-shift village in the midst of the Cité Soleil’s garbage dump as soon as possible, but we need your help.

young-boy

 

Update:  We just recently distributed food on the edge of Port-au-Prince at the Truttier dump; we gave food to 300 families who actually live inside the dump. We had to have several police officers come help us keep control of this chaotic situation. Some of the children here have not eaten for two days. We saw unbelievable suffering during the food distribution—especially with the children. Sadly, none of these children have ever been to school.

People waiting box of food

 

Please give these children of Haiti hope, show them that you care. We ask for your prayers because this will be a very dangerous outreach in the future. We need your help to save the children and families from these horrific conditions. Pray about how you and your family can help save them from living their lives in a medical and human waste garbage dump. You can send a financial gift to Love A Child • P. O. Box 60063 • Fort Myers, Florida 33906-6063 to help those Haitians living in the garbage dump or click on Make A Donation at the top of this page. You can also call 239-210-6107 now and ask how you can help.

 

God bless you,

Sherry

David

50 Recycling & Trash Statistics That Will Make You Think Twice About Your Trash

Recycling Statistics

Over 2,000 landfills are currently open in the United States, making our country an uglier place. And although they’re often camouflaged fairly well, the negative issues that accompany landfills remain.

Underneath the makeup that’s been plastered on landfills lay toxins, greenhouse gases, and leachate – all of which present concerning threats to our planet. If we want to leave this planet for our future generations, it’s critical that we have a proactive recycling plan in place – whether that’s in the office, in your community, or in your home.

Because of this, I wanted to focus on some key landfill statistics that will allow you to think differently about the current way our population disposes of its trash and the current problems that lie within its current practices. These 50 landfill facts on trash and recycling will prove the severity of the problems that lie within our current approach to trash.

Recyling Facts

1. Nine-tenths of all solid waste in the United States does not get recycled.

2. Landfills are among the biggest contributors to soil pollution – roughly 80% of the items buried in landfills could be recycled.

3. Although 75% of America’s waste is recyclable, we only recycle around 30% of it. Turns out, there are a few easy steps you can take to start recycling better.

4. A single recycled plastic bottle saves enough energy to run a 100-watt bulb for 4 hours. It also creates 20% less air pollution and 50% less water pollution than would be created when making a new bottle.

5. Recycling plastic saves twice as much energy as it takes to burn it.

6. It only takes 5 recycled plastic bottles to make enough fiberfill to stuff a ski jacket.

7. Motor oil never wears out, it just gets dirty – and it can be recycled.

8. The U.S. recycling rate is around 34.5%. If we’re able to get the rate to 75%, the effect will be like removing 50 million passenger cars from U.S. roads.

9. Over 11 million tons of recyclable clothing, shoes, and textiles make their way into landfills each year.

10. The leading cities for recycling in the US are (#1) San Francisco, CA (#2) Boston, MA (#3) Chicago, IL (#4) Denver, CO and (#5) Portland, OR.

11. The leading countries for recycling rates are: (#1) Switzerland [52%] (#2) Australia [49.7%] (#3) Germany [48%] (#4) Netherlands [46%] and (#5) Norway [40%]. The United States comes in around 31.5%.

12. 9 out of 10 people said they would recycle if it were “easier”.

13. Studies indicate that women on average typically express more concern for the environment and are more likely to recycle than men.

14. The United States throws away $11.4 billion worth of recyclable containers and packaging every year.

 

Plastic Facts

15. In the United States, we throw away 2.5 million plastic bottles every hour – about 42,000 per minute, or about 695 per second. But there’s an easy way to reduce your plastic use.

16. It takes 500 years for average sized plastic water bottles to fully decompose.

17. The amount of plastic film and wrap produced annually could shrink-wrap the state of Texas.

18. The energy it takes to make 1.5 million tons of plastic could power 250,000 homes.

19. There are 25 trillion pieces of plastic debris in the ocean. Of that, 269,000 tons float on the surface, while some four billion plastic microfibers per square kilometer litter the deep sea.

20. According to a study done by the University of Georgia, 18 billion pounds of plastic trash winds up in our oceans each year. To put that in perspective, it’s enough trash to cover every foot of coastline around the world with five full trash bags of plastic…compounding every year.

21. Plastics cause more than 80% of the negative effects on animals associated with ocean trash.

22. Over 100,000 marine animals die every year from plastic entanglement and ingestion.

 

Glass Facts

23. Glass bottles take 4,000 years to decompose.

24. Glass, like aluminum, is infinitely recyclable – without any loss in purity or quality.

25. Glass bottles have been reduced in weight by approximately 40% over the past 30 years.

26. Recycled glass is substituted for up to 95% of raw materials.

27. An estimated 80% of all glass containers recovered for recycling are re-melted in furnaces and used to manufacture of new glass containers.  

28. Glass container manufacturers hope to achieve 50 percent recycled content in the manufacture of new glass bottles. This achievement would save enough energy to power 21,978 homes for one year and while removing over 181 tons of waste from landfills monthly.

 

Aluminum Facts

29. Americans use 65 billion aluminum soda cans each year.

30. In only three months, enough aluminum cans are thrown out in the United States to rebuild all of our commercial air fleets.

31. Aluminum cans make up less than 1% of waste in the United States because they are the #1 recycled item.

32. There is no limit to the number of times you can recycle an aluminum can.

33. After recycling, an aluminum can is usually repurposed within 60 days.

34. Recycling just two aluminum cans save the same amount of energy it takes to power a PC for a single workday.

35. You can make 20 new cans from recycled material using the same amount of energy that it takes to make 1 brand new can.

 

Paper Facts

36. While the United States celebrates the holidays, Americans produce an additional 5 million tons of waste (four million of the 5 million tons consisting of wrapping paper and shopping bags).

37. The majority of the 4 million tons of junk mail that Americans receive annually ends up in landfills.

38. The energy used to create and distribute junk mail in the US for one day could heat 250,000 homes.

39. On average, Americans use 650 pounds of paper a year. Each.

40. U.S. businesses use around 21 million tons of paper every year.

41. The United States throws out the amount of office paper it would take to build a 12-foot wall from Los Angeles to New York City (2,794 miles).

42. Americans make nearly 400 billion photocopies a year, which comes out to 750,000 copies every minute.

43. The average office worker in the United States goes through roughly 500 disposable cups annually.

44. Making new paper from recycled materials uses less energy than producing paper from virgin tree products and leaves more trees to absorb excess carbon dioxide.

45. For every 1 ton of paper that’s produced, roughly 390 gallons of oil is used to make it.

46. 1 trillion pages of paper equal 8.5 million acres of trees. That is an area greater than the state of Maryland.

47. 2,000 pounds (or 1 ton) of recycled paper helps to save over 350 gallons of oil, 17 trees, and a large portion of landfill space.

48. A single American consumes roughly two trees annually in paper products.

49. Of the 62 million newspapers printed daily in the United States, 44 million will be thrown away (roughly 500,000 trees).

50. If 1/10 of all discarded American newspapers were recycled annually, approximately 25 million trees would be saved.

 

Sources:
https://www.northerncoloradodisposal.com/facts/
https://www.usi.edu/recycle/solid-waste-landfill-facts/
http://list25.com/25-shocking-facts-about-pollution/
http://www.fao.org/save-food/resources/keyfindings/en/
https://www.bc.edu/offices/sustainability/what-you-can-do/know-facts.html
http://earth911.com/eco-tech/20-e-waste-facts/
https://www.factretriever.com/recycling-facts

 

David

How reducing food loss, waste can generate a triple win

foodwastebag.jpg

 

A new report explains how reducing food loss and waste can help save on costs, combat hunger and alleviate pressure on climate.

Mallory Szczepanski | Aug 30, 2019

It’s no secret that a significant amount of food intended for human consumption is never eaten and wasted across the globe. This issue is being addressed by many companies, municipalities, nonprofits, governments and individuals, but more work must be done to successfully reduce food loss and waste.

In a new report by World Resources Institute, "Reducing Food Loss and Waste: Setting a Global Action Agenda," experts explain how tackling the issue of food loss and waste can ultimately generate a “triple win.” According to the report, implementing reduction efforts can help farmers, companies and households save money; combat hunger; and alleviate pressure on climate, water and land.

The report highlights the food loss and waste challenge, the cause of the issue, what should be done to address it, what progress has been made so far and more.

“There’s more public and private sector activity than ever—with 30 of the world’s largest global food companies setting targets to reduce food loss and waste—but we’re still falling short in major areas,” said Andrew Steer, president and CEO of World Resources Institute, in a statement. “Halving food loss and waste by 2030 is critical if we’re to feed the world without destroying the planet. The three-pronged agenda we’re urging gives the world a blueprint for success, with clear and specific action items everyone from crop farmers to hoteliers must take now to combat this waste.”

It also outlines a Global Action Agenda, encouraging countries and companies to adopt the United Nations Sustainable Development Goals as their own, measure their food loss and waste, take action on identified hotspots, identify a shortlist of to-dos for each type of actor in the food supply chain and scale up the impact and pace of these actor-specific interventions.

“The global action agenda we’re proposing rests on big, bold ideas,” said Katie Flanagan, associate at World Resources Institute and lead author of the report, in a statement. “I’m happy to say some are already underway, such as a rise in national public-private partnerships and new financing. Others would break fresh ground. We know this is ambitious, but when we look at the amount of food that is lost and wasted, it’s clear that such a massive challenge demands massive action.”

Below are some key takeaways from the report.

Reduction as a strategy

Many areas across the globe are setting sustainability goals, including food loss and waste reduction goals and greenhouse gas emissions reduction goals. While many of these goals are challenging and will take effort from various parties to successfully achieve, experts mention in the report that reduction can be a strategy to achieving these set goals.

Reducing food loss and waste can improve hunger, poverty and health, ultimately helping to create a sustainable food future and to fix an inefficient food system for the sake of people and the planet, the report points out.

WRI-food-waste-chart-2019.jpg

Why food loss and waste matters

Reduction of food loss and waste can have a significant impact on the environment, economy, food security, job market and ethics, according to the report. For example, food loss and waste reduction can help slash greenhouse gas emissions, combat hunger across the globe, create jobs across the supply chain and help change behavior and habits for the better.

Additionally, reduction can help meet the United Nations Sustainable Development Goals by 2030, contribute to the Paris Agreement on climate change and sustainably feed the planet by 2050, the report points out.

The cause of food loss and waste

In order to successfully reduce food loss and waste, one needs to understand the cause of the issue. The report points to “direct causes” of food loss and waste, such as concerns about a food’s safety or suitability, and “underlying drivers,” which can be technological, managerial, behavioral or structural in nature.

Altogether, there are 15 underlying drivers that need to be addressed if food loss and waste is to be successfully reduced:

  1. Poor infrastructure
  2. Inadequate equipment
  3. Suboptimal packaging
  4. Inadequate food management practices, skills or knowledge
  5. Inflexible procurement practices
  6. Poor supply and demand forecasting and planning
  7. Marketing strategies
  8. Norms and attitudes
  9. Lack of awareness
  10. Concerns about possible risks
  11. Conditions in demographics
  12. Climate
  13. Policies and regulations
  14. Economics
  15. Financing

It’s important to note that some underlying drivers are more prominent in certain regions and that food loss and waste is often driven by more than one driver.

What action needs to be taken

The report states that governments and companies should pursue a simple but effective “Target-Measure-Act approach” when it comes to reducing food loss and waste. Here’s a breakdown of what that means:

1. Set targets. Targets set ambition, and ambition motivates action.

2. Measure food loss and waste. Measuring food loss and waste can help decision-makers better understand how much, where and why food is being lost or wasted. Understanding the problem can help you overcome it and keep you on track to meet your goals.

3. Take action. Create a priority to-do list for each type of actor to get started with reducing food loss and waste. Then, take action to put that list into motion.

10 scaling interventions

To help accelerate and broaden the deployment of the Target-Measure-Act approach and the actor-specific interventions, the report highlights 10 scaling interventions:

  1. Develop national strategies for reducing food loss and waste.
  2. Create national public-private partnerships.
  3. Launch a “10x20x30” supply chain initiative, where at least 10 corporate “power players” commit to Target-Measure-Act and then engage their own 20 largest suppliers to do the same and achieve a 50 percent reduction in food loss and waste by 2030.
  4. Invigorate efforts to strengthen value chains and reduce smallholder losses.
  5. Launch a “decade of storage solutions.”
  6. Shift consumer social norms.
  7. Go after greenhouse gas emissions reductions.
  8. Scale up financing.
  9. Overcome the data deficit.
  10. Advance the research agenda.

To view the full report, click here.

David

What we can do for our grandchildren

By Susan Horton

Posted Aug 29, 2019 at 3:00 AMUpdated Aug 29, 2019 at 7:32 AM

Like many others, I’ve heard Trump-supporting friends invariably ask, “Have you checked your 401(k) lately?” As if that’s all that needs to be said. It’s not. Approaching 78, I have more than 25 nephews and nieces, and twice that many great-grandchildren. Anyone seeing the exuberant smile on the newest – a boy who will be 1 in October – would adore him, as I do. It’s completely natural to think about what I can pass on to him.

But just stockpiling money for him won’t save him, or any of the others. If unregulated pesticides, polluted waters, and climate change kill off all the honey bees, when he grows up there will be no bees – so no pollinators, no wheat, no other grains, no bread to eat, no vegetables. If we continue fouling our oceans with plastics, killing whales, turtles and the fish we love to eat – each of two of the recent dead whales found off the coast of Europe had 47 pounds of plastic in their stomachs, but no food – what will those we love and leave behind have to eat?

If we continue the pace of deregulation we’re on, many businesses will be happy, since they’ve been freed to spew more pollutants into our waters and air. The money in our 401(k) or certificates of deposit will go up. But as the effects of those policies become more glaring, what will our grandchildren and great-grandchildren drink? What air will they breathe?

It’s young people, like 16-year-old Greta Thunberg of Sweden, who, speaking at the International Panel on Climate Change, urgently asked those questions of us. Not how much money we’ll leave them, but what kind of world we will leave them. They are the ones who will have to cope with the wildfires and windstorms, the floods and hurricanes, the polluted water, the denuded world we will have left behind for them to inhabit. They will not thank us, no matter how many dollars we leave them. What, after all, will they be able to spend them on, with no food, clean water or air to breathe?

We need to spend less time eyeing that 401(k) and more time investing time researching organizations, coalitions, and legal entities fighting to ensure that after we’re gone, there will still be a world where the precious ones we leave behind can ski, swim, sit in the sun, walk the beach, eat lobster and quahogs – do all of the things that, after all is said and done, is what we’ve always hoped to leave behind for them after we’re gone.

Susan R. Horton lives in West Harwich.

David