When The Mermaids Cry – THE CONSENSUS

THE CONSENSUS

Undeniably a culture of behavioural changes, now in its infancy, need to further blossom and be implemented/prompted at all levels: individual, associative, governmental, legislative, industrial, technological, educational, philosophical, national, and international.

It simply starts with individual choices. That is the enormous task, yet the enormous power as well because it resides within each and every one of us. Indeed, thanks to an increased awareness of the plastic pollution spread, local, national, individual, and associative actions have taken place worldwide to stop the plastic hemorrhage at the source.

EDUCATION, LEGISLATION, AND AWARENESS

Education

The starting point of all greater good does remain education and information.

More and more awareness and preventive programs are promoted.

For instance, in 2004, the Australian government launched a campaign called Keep the Sea Plastic Free, in which it attempted to educate the public to dispose of plastic waste properly.

Surfrider foundation is aiming to raise awareness of plastic marine debris and reduce the proliferation of single-use plastic bags and water bottles, as well as the number one littered item worldwide, cigarette butts. The Rise Above Plastics program also seeks to promote a more sustainable lifestyle and educate people about the prevalence of plastic marine debris on our beaches and oceans and how deadly it can be to marine life.

Southeast Asia
South East Asia – Philippines, 2008. Photo: Tamara Thoreson Pierce

The Indonesian government, for instance “(is) seriously concerned about improving its waste management and informing the public,” quoted the Jakarta Post, 2008. The head of the Maritime and Coastal Resources Studies, Tridoyo Kusumastanto, said that both individual and industrial dumpers should learn from scavengers who take solid waste out instead of dumping it into rivers, canals and the sea. Tridoyo estimated that some 40 tons of waste have been dumped into rivers and other waterways daily in surrounding areas and thus polluting the Java Sea. A campaign against river and sea pollution has been called, and people are urged to change their culture of throwing garbage into waterways and other common places.

Being educated on the situation and aware of the consequences ultimately leads us toward better choices in term of consumption and waste management of plastic at an individual level. It can be as simple as refraining from discarding plastic after first use…plastic inherently chosen for its durability.

plastic-pollution-india

Mumbai Impressions… when the water retreats… Plastic Pollution. Captions and Photo source: ©© Don Domingo

As H. Takada mentioned: “We can’t avoid using plastic, but we use too much. “In fact, he’s added a fourth “R” to the ecologist’s classic mantra of reduce, reuse, recycle: refuse. The current bring-your-own-bag movement at retail stores and supermarkets is a good start in terms of refusing, he notes.

Instantaneous, prompt eradication of plastics in its current form, rate of production, and consumption is not realistically feasible, yet constant pressure is impacting industry and politicians to “think green,” to have environmentally responsible approach, production, prevention plans, and legislations.

EXTEND PRODUCER RESPONSIBILITY

Relentless associative campaigns have proven that change can happen, such as the recent victory from the Uk’s Surfers Against Sewage (SAS) campaign against mermaid tears.

“SAS launched a campaign to rid British coastlines of mermaid tears, and will continue to build up until factory practice changes.” On June 5th 2009, the release of the British Plastic Federation’s (BPF) Operation Clean Sweep (OCS) guidance manual was a victory on the preventive field. OCS is aimed at improving British plastic factories efficient use of plastic pellets, commonly referred to as mermaid’s tears. SAS initially highlighted the problem of mermaid’s tears on UK beaches to the BPF in 2007, delivering a bottle of 10,000 mermaid’s tears, collected from one Cornish beach, to a BPF biopolymer seminar. SAS also released a covert film documenting mermaid’s tears in the storm drains of plastic factories in the southwest, highlighting the route from factory to beach. SAS and the BPF have worked together on the OCS solution. SAS has already signed up Contico, one of the southwest’s largest plastic factories, to pilot some of the improvements within OCS.

Shoichiro Kobayashi, from The Japan Plastics Industry Federation, says that its members have taken measures to reduce spillage of plastics nurdles.

“Awareness of the problem is high,” says Kobayashi, and has been since JEAN and other NPOs started publicizing the issue about 15 years ago. The federation has about 1,000 members. Together with the 2,200-member All Japan Plastic Products Industrial Foundation, the two groups represent the largest plastic producing companies in Japan. Kobayashi says his organization encourages members and associated transport companies to avoid spillage and to cover all drainage pipe openings with wire mesh. That’s helped reduce the problem at larger companies, but there are more than 20,000 producers of plastic goods in Japan.

On September 22nd 2009 in California, a press conference was held by DTC director Maziar Movassaghi and Project Kaisei founder Mary Crowley, along with representatives from the State of California and various nonprofit groups. They pushed for Extended Producer Responsibility, the philosophy that companies that create products must take responsibility for the full life cycle of those products, products that are “benign by design.” Mary Crowley added, “Let’s reduce the source of this pollution by not only choosing healthy, plastic-free products ourselves, but also urging our legislators to pass Extended Producer Responsibility legislation. In fact, such a bill is currently on the table in the state of California. AB283, the California Product Stewardship Act, is an important step in this process.”

Changzhi, Shanxi Province
Changzhi, Shanxi Province. Photo: Stringer Shanghai

Local legislations, with clear frames and enforcements measures, are increasingly being presented and passed in concert with international programs and legislations, which need ratification by as many countries as possible as the pollution is without frontiers.

LEGISLATION AND INTERNATIONAL CONCERTED PROGRAMS

Internationally

In 1972, the London Convention, a United Nations agreement to control ocean dumping, was entered into. It was followed by the most well known piece of International legislation, the International Convention for the Prevention of Pollution from ships (MARPOL). Annex V of MARPOL was introduced in 1988 with the intention of banning the dumping of most garbage and all plastic materials from ships at sea. A total of 122 countries have ratified the treaty. There is some evidence that the implementation of MARPOL has helped to reduce the marine debris problem.

UK Beach
UK Beach. Photo Source: SWNS

In 1972 and 1974, conventions were held in Oslo and Paris, respectively, which resulted in the passing of the OSPAR Convention, an international treaty controlling marine pollution in the north-east Atlantic Ocean around Europe. A similar Barcelona Convention exists to protect the Mediterranean Sea. The Water Framework Directive of 2000 is a European Union directive committing EU member states to make their inland and coastal waters free from human influence. In the United Kingdom, the proposed Marine Bill is designed to “ensure clean healthy, safe, productive and biologically diverse oceans and seas, by putting in place better systems for delivering sustainable development of marine and coastal environment”.

Under the umbrella of UNEP, numerous cooperative efforts have been held to reach protocols and conventions. For instance, a Protocol on Integrated Coastal Zone Management was approved in January 2008, involving 21 countries bordering the Mediterranean Sea, as well as the European Union. Within the framework of Land Based Sources Protocol for pollution reduction from land-based sources, Mediterranean countries and parties to the Barcelona Convention have agreed this year on an initial set of actions covering the reduction of municipal pollution and the elimination of a number of Persistent Organic Pollutants.

The Caribbean Environment Programme (CEP) continues to encourage member states in meeting the Caribbean Challenge target of protecting 20 percent of marine and coastal habitats by 2020. The Caribbean Large Marine Ecosystem Project and development of a Regional Fund for Wastewater Management will support regional collaboration to reduce the vulnerability of sensitive coastal and marine ecosystems by improving national and regional governance structures and developing new and innovative mechanisms for financing new pollution reduction activities.

Even though the greatest problem with international legislation is its actual enforcement, the efforts toward concerted actions can only be promoted.

Nationally

A strict Chinese limit on ultra-thin plastic bags significantly reduced bag-related pollution nationwide during the past year. “Our country consumes a huge amount of plastic shopping bags each year” a spokesperson for China’s State Council said, when announcing the ban last May. “While plastic shopping bags provide convenience to consumers, this has caused a serious waste of energy and resources and environmental pollution because of excessive usage, inadequate recycling and other reasons.” In January 2008, The State Council, China’s parliament, passed legislation to prohibit shops and supermarkets from providing free plastic bags that are less than 0.025 millimeters thick. The State Administration of Industry and Commerce also threatened to fine shopkeepers and vendors as much as 10,000 Yuan ($1,465) if they were caught distributing free bags. The country avoided the use of 40 billion bags, according to government estimates. The National Development and Reform Commission (NDRC) estimated that the limit in bag production saved China 1.6 million tons of petroleum.

The first country to ban plastic bags was Bangladesh, which did so in 2002. Following a particularly damaging typhoon, authorities discovered that millions of bags were clogging the country’s system of flood drains, contributing to the destruction.

In the same year, Ireland took another approach and instituted a steep tax on plastics. According to the country’s Ministry of Environment, use fell by 90 percent as a result and the tax money that was generated funded a greatly expanded recycling program throughout the country. In 2003, the government of Taiwan put in place a system by which bags were no longer made available in markets without charge. Carryout restaurants were even required to charge for plastic utensils.

Larger economies have joined the cause and passed legislations on a national level. In 2005, French legislators imposed a ban on all non-biodegradable plastic bags, which will go into effect in 2010. Italy will also ban them that year.

During its 2008 session, the New York State Legislature passed legislation requiring the reduction, reuse, and recycling of checkout bags. The previous year, the city of San Francisco banned plastic bags altogether, at least the flimsy ones of yore. National Public Radio reported a few months later that the ban had been a boom for local plastics manufacturers, who have been introducing heavy-duty, recyclable, and even compostable bags into the marketplace.

MEDIA AND CREATIVE AWARENESS

An impactful vehicle for information and awareness is indubitably found in the media and creative ventures.

A good example of such ventures is the team of two South African surfers, Ryan and Bryson Robertson, and one Canadian, Hugh Patterson, who created the OceanGybe mission. Their plan is to circumnavigate the globe in a small 40ft sailboat and surf remote reef breaks on far flung islands while interacting with the local cultures. They intend to spread awareness of the vast tracts of plastic and trash afloat on the world’s oceans that inevitably ends up on some unsuspecting shore.

Fishing debris on beach
Fishing debris on beach. Photo Source: unknown

More publicized and funded is the environmentalist and Adventure Ecology founder David de Rothschild’s expedition: the Plastiki mission.

The Plastiki, a one-of-a-kind 60-foot catamaran, was created out of 10,000 reclaimed plastic soda bottles, self-reinforced PET (polyethylene terephthalate) and recycled materials. The vessel’s name is a nod to famed explorer Thor Heyerdahl, who led a 1947 voyage on the Kon-Tiki to test theories of Polynesian settlement by South Americans. The Plastiki is about to make its momentous voyage across the Pacific Ocean, a 10,000-mile expedition from San Francisco to Sydney, Australia by the end of this year, to inspire people to rethink current uses and waste of plastic as a resource and bring attention to the GGP.

De Rothschild explained that Plastiki’s construction has already jump-started research into a future “smart plastics” industry before ever leaving port. For instance, studies are underway on glues that could someday replace common marine epoxies and plastics that could replace non-recyclable fiberglass.
“The Plastiki voyage will be a great adventure, but I think more exciting is the ability to create a conversation on the issue of plastics.”

Philosophy

Adventures of philosophical nature have been taking place as well.

Indeed, French thinkers such as Michel Serre or Luc Ferry, The new ecological order, have developed a train of thought aiming towards a legal recognition, therefore legal protection of Nature. This type of philosophy has been called, deep ecology. The principle is quite simple: democracies have installed their legislative framework, their “social contract,” omitting Nature as a protagonist/subject of law. Therefore, to protect Nature, i.e. our environment, should we confer legal right to it, thus making nature a legal subject/person?

Obviously, all subject of law have rights, but they also have obligations. If we can easily forsee what the right and protection would be for this legal subject, what would be its obligations?

This leads many thinkers towards a notion of “droit ou devoir d’ingerence ecologique” (right or duty of intervention/assistance), trying to mirror the situation on the humanitarian field. The notions of “self defense” and “non assistance a personne en danger” have also been explored as possible legal frames to better enforcement of laws and conventions aimed to protect the environment, and curb ocean plastic pollution for that matter.

plastic pollution albanie

Décharge Plage, Albanie. Photo: ©© Antoine Giret / Un2Vue

Sustainable And Future Technologies – Opportunities And Innovations

  • Biodegradable Plastics

    Biodegradable plastics have been considered as a future, sustainable option to curb our voracious demand and consumption of plastic material as known in its current form. According to the Biodegradable Plastics Society (2005), when such plastics are composted they break down to carbon dioxide and water.

    Controversy does exist though, because it is possible that biodegradable plastics do not break down fully, especially under environmental conditions which are not ideal for composting, and leave non-degradable constituents, some of which may be equally, if not more, hazardous. Also, there is a danger that biodegradable plastics will be seen as “litter friendly” materials, conveying the wrong message to the public and potentially leading to less responsible and more wasteful practices.

    A change in behavioral propensities to over-consume plastics, discard and thus pollute, need to be promoted to the fullest.

  • Ongoing Discoveries And Solutions To The Traditional Plastic Waste Problem

    Scientists have been searching for solutions to the traditional plastic waste problem.

    In 2008 and 2009, two high school students who discovered plastic-consuming microorganisms, might have found groundbreaking solutions.

    Africa

    African coast, plastic pollution and marine debris. Photo: Candace Feit

    The first was Daniel Burd (2008). The second was Tseng I-Ching(l May 2009), a high school student in Taiwan.

    Daniel’s simple and clever process was to immerse ground plastic in a yeast solution that encourages microbial growth, then isolating the most productive organisms. After several weeks of tweaking and optimizing temperatures, Burd was achieved a 43 percent degradation of plastic in six weeks, an almost inconceivable accomplishment. It appeared as an environmentalist’s dream: a non-chemical, i.e. fully organic, low cost and nontoxic method for degrading plastic.

    There have been several successful bacteria based solutions developed at the Dept. of Biotechnology in Tottori, Japan, as well as at the Dept. of Microbiology at the National University of Ireland, but both apply only to styrene compounds.

    Similarly, a 2004 study at the University of Wisconsin isolated a fungus capable of biodegrading phenol-formaldehyde polymers previously thought to be non-biodegradable.

  • Green Chemistry And “Begnign By Design” Concept

    A growing interest amongst chemists, and ultimately industries, is Green chemistry- policy, also called “benign by design”.

    According to scientists at the University of Southern Mississippi (USM), a new type of environmentally friendly plastic that degrades in seawater may be developed. Robson F. Storey, Ph.D., a professor of Polymer Science and Engineering at USM, said, “We’re moving toward making plastics more sustainable, especially those that are used at sea.” Their study is funded by the Naval Sea Systems Command (NAVSEA), which is supporting a number of ongoing research projects aimed at reducing the environmental impact of marine waste. The new plastics are made of polyurethane that has been modified by the incorporation of PLGA [poly (lactide-co-glycolide)], a known degradable polymer used in surgical sutures and controlled drug-delivery applications. When exposed to seawater, the plastics degrade via hydrolysis into nontoxic products, according to the scientists. The plastics are not quite ready for commercialization. “More studies are needed to optimize the plastics for various environmental conditions they might encounter, including changes in temperature, humidity and seawater composition”, Storey says.

    A new kind of material, called oxo-biodegradable plastic, does not just fragment, but is consumed by microorganisms after the additive has reduced the molecular weight. It is thus biodegradable. This process continues until the material has biodegraded to nothing more than CO2, water, humus, and trace elements. There is little or no additional cost, as it can be made with the same machinery and workforce as conventional plastic. The time taken to degrade can be programmed to a few months or a few years and, until the plastic degrades, it has the same strength and other characteristics as conventional plastic. Oxo-biodegradable plastic will be engineered to degrade in a short time leaving no harmful residues.

  • Recycling And Zero Waste Concept

    A promising way toward a future of better plastic waste management is recycling the material. The recycling industry might eventually be a path leading to considerable opportunities and solutions.

    The BIR (Bureau of International Recycling), whose headquarters is in Belgium, is a trade federation representing the world’s recycling industry. About 800 companies and national federations from over 70 countries are affiliated with the BIR. Together they provide their expertise to other industrial sectors and political groups in order to promote recycling. It is estimated that the recycling industry employs more than 1.5 million people, annually processes over 500 million tons of commodities, and has a turnover exceeding $160 billion.

    However, this industry is faced with many challenges, as the recycling material itself is very diverse in a chemical sense and can release, when processed, extremely dangerous chemicals. For instance, a recycling factory in China was recently exposed to tragic consequences due to the recycling of very hazardous plastic materials. It was reported that a team of workers in China’s Zhejiang province collapsed after handling two metric tons of plastic scrap on September 13, 2009. At least 21 have since been hospitalized and three of them have died. According to the initial investigative conclusions, the victims were in contact with highly toxic chemical, dinitrophenol, which was found on the two tons of plastic scrap. Workers at the recycling factory were unaware of the hazard of the material and had no protection during the unloading. This particular tragedy is only the tip of the iceberg. China’s plastics recycling industry is poorly regulated, with scandals such as biohazard plastic waste being melted and reprocessed into consumer goods.

    Recycling is definitely a potentially great path to solving the plastic waste problem but definitely not the most unchallenging one.

    Along the same lines, a responsible waste strategy, namely the concept of Zero Waste, has been widespread. Such a strategy encompasses waste reduction, reuse and recycling as well as producer responsibility and ecodesign. According to a Greenpeace report, strategies to achieve Zero Waste are adopted throughout the world, in industrialized countries and in less developed countries.

    Ultimately, this would mean reduction of the use of plastics. “Our understanding of disposal and reuse (of plastic, is what) is to blame.” as many environmentalist such as de Rothschild, said.

    This zero waste philosophy encourages the redesign of resource’s life cycles, so that all products are reused. Any trash sent to landfills is minimal. The process recommended is one similar to the way that resources are reused in nature. Zero waste can represent an economical alternative to waste systems, where new resources are continually required to replenish wasted raw materials.

    DTSC’s Environmental Chemistry Laboratory is currently analyzing some of the plastic marine debris collected at the Great Garbage Patch by Project Kaisei scientists, and explores the potential of converting the plastic collected into new material.

    Indeed, Doug Woodring from Project Kaisei stated last September that they intend to use some of the newest plastic technologies to detoxify and turn the plastic waste caught in the oceans either into fuel or another useable material. Thus, Project Kaisei hopes to assign value to that plastic collected, particularly the overwhelming majority that is never recycled. It becomes obvious that technologies that convert plastic to fuel, clothing, or simply more profitable plastic could give people a good reason to pick up all that plastic and make a profit from it. Numerous industries, such as fashion, are already increasingly focusing on new green materials as a base for their offered products, encouraging a way of life and cultural change toward better choices and awareness of the environment.

    “It’s controllable,” DougWoodring said. “We have to let people know that enough is enough, but it’s not just a negative story about toxicity and wrecking our oceans. There is a huge amount of opportunity for innovation.”

David

WHEN THE MERMAIDS CRY – THE PATH TO SUCCESSFUL RESOLUTION

II: THE PATH TO SUCCESSFUL RESOLUTION

This unprecedented plastic waste tide appears as vast as the ocean, as ungraspable as the unfathomable mass of microscopic plastic fragments present at sea, transported by winds and currents, yet, ultimately, the plastic tide can become as limited as our chosen relationship with plastics, which involves a dramatic behavioral change on our part. The path to successful resolution of the crisis clearly appears…as we are the problem and the solution.

THE VICTIMS AND THE AGGRESSORS

The despondent effects and too numerous casualties of the great plastic tide are visible, but more alarmingly, beyond visual, which ought to prompt the perpetrators to choose no other path than the advocacy and culture of consistent and sustained behavioral changes.

Creek in Manilla
Creek in Manilla, Philippines, March 01 2009. Photo: Francis R. Malasig

THE VICTIMS

Animals

From the whale, sea lions, and birds to the microscopic organisms called zooplankton, plastic has been, and is, greatly affecting marine life, i.e animals on shore and off shore, whether by ingestion or entanglement.

In a 2006 report, Plastic Debris in the World’s Oceans, Greenpeace stated that at least 267 different species are known to have suffered from entanglement and ingestion of plastic debris. The National Oceanographic and Atmospheric Administration said that plastic debris kills an estimated 100,000 marine mammals annually, millions of birds and fishes.

The largest pieces of marine plastic debris, miles long discarded fishing nets and lines mostly, take an obvious toll on animals. These derelicts nets, called ghost nets, snare and drown thousands of larger sea creatures per year, such as seals, sea lions, dolphins, sea turtles, sharks, dugons, crocodiles, seabirds, crabs, and other creatures. Acting as designed, these nets restrict movement causing starvation, laceration, infection, and, in animals that need to return to the surface to breathe, suffocation.

Entangled seal by derelict net
Entangled seal by derelict net, Hawaii. Photo Source: NOAA

On shores, researchers have also watched in horror as hungry turtles wolf down jellyfish-like plastic bags and seabirds mistake old lighters and toothbrushes for fish, choking when they try to regurgitate the plastic trash for their starving chicks.

Turtle eats plastic
Turtle eats plastic. Photo Source: Greenhouse Carbon Neutral Fdn

In the waters, plastic bags specifically, can be mistaken as food and consumed by a wide range of marine species, especially those that consume jellyfish or squid, which look similar when floating in the water column.

Albatross and others birds are choosing plastic pieces because of their similarity to their own food as well. Captain Moore and his Alguita team did see, above the GGP, albatrosses and tropicbirds circling above the line of trash. With little else to choose, they were obviously eating plastic. The birds seemed to be picking and choosing “the reds and pinks and browns. Anything that looks like shrimp,” Moore says. Earlier in the trip, the Alguita had visited the French Frigate Shoals, off Hawaii, home to endangered monk seals and seabird rookeries. In the birds’ gullets researchers found red plastic particles. Greenpeace reported that a staggering 80 percent of seabird populations observed worldwide have ingested plastics. Research into the stomach contents of dead Fulmars from the Netherlands, between 1982 and 2001, found that 96 percent of the birds had plastic fragments in their stomachs with an average of 23 plastic pieces per bird (Van Franeker and Meijboom, 2003).

Midway atoll
Midway atoll, bird corpse. Photo: © Chris Jordan

When plastic ingestion occurs, it blocks the digestive tract, gets lodged in animals windpipes cutting airflow causing suffocation, or fills the stomach, resulting in malnutrition, starvation and potentially death. Indeed, it is found that debris often accumulates in the animals’ gut and give a false sense of fullness, causing the animal to stop eating and slowly starve to death.

Midway atoll
Midway atoll, bird corpse. Photo: © Chris Jordan

In April 2002 a dead Minke whale washed up on the Normandy coast in France. An investigation found that its stomach contained 800 kg of plastic bags (GECC, Groupe d’Etude des Cétacés du Cotentin, 2002).

In February 2004, a Cuviers Beaked whale (Ziphius cavirostris) was found washed ashore on the west coast of the Isle of Mull, Scotland. Cuviers beaked whales are rarely seen in coastal waters, as they are predominantly a deep-water species. The Hebridean Whale and Dolphin Trust took various skin and blubber samples and removed the stomach for further study by the Scottish Agricultural College. On initial removal it was found that the entrance to the stomach was completely blocked with a cylinder of tightly packed shredded black plastic bin liner bags and fishing twine. It is believed that this made it difficult for the animal to forage and feed effectively.

50 to 80 percent of sea turtles found dead are known to have ingested plastic marine debris.

The smaller the pieces of plastic get, the more dangerous they are to marine organisms. Fragmented plastic, specifically nurdles and small size mermaid tears, are found in the stomach of smaller sea creatures as well: fish, birds, marine mammal, reptile, jelly fish, select plastic pellets as they resemble fish eggs.

Whether the chemicals contained in the plastics are then desorbed to digestive fluids and transferred to tissues in quantities significant enough to harm the animals is subject to ongoing, yet still incomplete, research. However, as more and more studies on the matter are undergone, unpleasant findings are definitly uncovered.

What is proven, as we’ve seen supra, is that plastic does soak up pollutants, acting as toxic-sponge for man-made toxins present in the ocean, thus accumulating pollutants such as polychlorinated biphenyls (PCBs) and heavy metals at concentrations up to 1 million times higher than in ocean water (Moore et al, 2001). PCBs can lead to reproductive disorders, death, an increased risk of disease, and an alteration of hormone levels (Ryan et al., 1988;Lee et al, 2001). They have been linked to the masculinisation of female polar bears and spontaneous abortions and declines in seal populations. In 1988, Ryan et al obtained evidence that PCBs in the tissues of Great Shearwaters were derived from ingested plastic particles (from Derraik, 2002). Furthermore, DDT, a pesticide that was banned in the US in the 1960’s and labeled by the Environmental Protection Agency in 1987 as a “probable human carcinogen,” has been found on these plastics fragments. The most recent review of all evidence concludes that exposure to DDT before puberty increases the risk of breast cancer.

Food Chain

In a September press conference, Doug Woodring from Project Kaisei, said that assessments of the impact of plastic debris on phytoplankton, zooplankton, and mesopelagic (midwater) fishes are undergoing. The samples collected from the seawater will be subject to more scientific studies for the toxicity of the plastics and how this is really affecting our food chain (in ways that are only just becoming known… and not good ways).

Plastic found in fish guts
Plastic found in Rainbow Runner fish guts. Photo Source: Algalita Marine Research Foundation

Katsuhiko Saido, Ph.D said, “We found that plastic in the ocean actually decomposes (…) giving rise to yet another source of global contamination that will continue into the future.” Furthermore, as Saido added: “We are concerned that plastic pollution is also caused by these invisible materials and that it will harm marine life.” While the potential toxicity of these tiny plastic constituents is still understudied for much of marine life, plastics are abundant in many forms. Plastics, including polystyrene, are common in the wads of accumulated, undigested matter that young black-footed albatrosses cough up before they fledge.

Whether plastics present a unanimously accepted and proven toxic challenge to marine life, and subsequently to humans, is one of the biggest challenges facing scientists right now.

Health

Saido’s latest science report last summer about the decomposition of polystyrene plastics vests a simple reality: Bisphenol A (BPA) has been shown and proven to interfere with the reproductive systems of animals. PS oligomer and BPA from plastic decomposition are toxic and can be metabolized, while styrene monomer is a suspected carcinogen. Low levels of BPA and PS oligomer have been proven to cause hormone disruption in animals.

More scientific reports are being published on the effects of Bisphenol A on animal and human health, and the news is not good.

In 2009, a professional, international medical organization in the field of endocrinology and metabolism, The Endocrine Society, reported data from new research on animals experimentally treated with BPA. Studies presented at the group’s annual meeting show BPA can affect the hearts of women, can permanently damage the DNA of mice, and appear to be entering the human body from a variety of unknown sources. A 2005 study, which analyzed BPA serum concentrations, concluded that “exposure to BPA is associated with recurrent miscarriage”.

The first major study of health effects on humans associated with bisphenol A exposure was published in September 2008 by Iain Lang and colleagues in the Journal of American Association. The cross-sectional study of almost 1,500 people assessed exposure to bisphenol A by looking at levels of the chemical in urine. The authors found that higher bisphenol A levels were significantly associated with heart diseases, diabetes, and abnormally high levels of certain liver enzymes.

A 2008 scientific review concluded that “prenatal exposure to (…) low doses of BPA alters breast development and increases breast cancer risk”. A 2009 scientific review, funded by the “Breast Cancer Fund”, has recommended “a federal ban on the manufacture, distribution and sale of consumer products containing bisphenol A”.

A 2009 study on urinary concentrations concluded that prenatal BPA exposure might be associated with externalizing behaviors in two-year old children, especially among female children.

A 2009 study on Chinese workers in BPA factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire, and overall dissatisfaction with their sex life than workers in factories that made products ranging from textiles to machinery, in which there was no heightened BPA exposure. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

A 2009 review of available studies has concluded, “Prenatal BPA exposure acts to exert persistent effects on body weight and adiposity.”

A 2009 scientific review about environmental chemicals and thyroid function concluded, “Available evidence suggests that governing agencies need to regulate the use of thyroid-disrupting chemicals, particularly as such uses relate exposures of pregnant women, neonates and small children to the agents”. A 2009 review summarized BPA adverse effects on thyroid hormone action.

Bali Trash
Kuta beach, Bali. Photo Source: Claude Graves

All sea creatures, from the largest to the microscopic organisms are, at one point or another, swallowing the seawater soup instilled with toxic chemicals from plastic decomposition. Much of ocean’s life is in the microscopic size range and zooplankton is the base of the food chain. As environmentalists remind the world’s population, “…We are eating fish that have eaten other fish, which have eaten toxin-saturated plastics. In essence, humans are eating their own waste…” (Dixit Renee Brown, WiredPress).”

Beaches, Coast, Sea Floor, Shorelines

Blatantly visible is the plastic spill washing up on the shores and beaches. Just a walk on any beach, anywhere in the world, and plastic debris are found in one form or another. All over the world the statistics are ever growing, just staggeringly. Last year, an estimated 150,000 tons of marine plastic debris washed up onto the shores of Japan and 300 tons a day on India’s shores.

Layson Island
Layson Island, Hawaiian islands. Photo Source: NOAA

The Hawaiian Archipelago, extending from the southernmost island of Hawaii 1,500 miles northwest to Kure Atoll, is among the longest and most remote island chains in the world. The 19 islands of the archipelago, including Midway atolls, receive massive quantities of plastic debris, shot out from the Pacific gyres. Some of the plastic litter is decades old. Some beaches are buried under 5 to 10 feet of plastic trash, while other beaches are riddled with “plastic sand,” millions of grain-like pieces of plastic that are practically impossible to clean up. One of the reasons marine debris accumulates in these islands is the movement of debris within the North Pacific Subtropical Convergence Zone (STCZ), as we have explained supra.

Two studies on several islands off Jakarta Bay and islands further to the northwest in the Java Sea, reported that debris pollution on shorelines had substantially increased between 1985 and 1995 (Uneputty and Evans 1997b, Willoughby et al. 1997). Both studies noted that results implicated Jakarta as a major source of the debris. On 23 of the islands, it was reported that the total litter at the strandline ranged from not detectable to 29.1 items/m (Willoughby et al. 1997). Plastic bags, polystyrene blocks, and discarded footwear accounted for 80 percent of the items found.

Researchers Barnes and Milner (2005) list five studies which have shown increases in accumulation rates of debris on mid to high latitude coasts of the southern hemisphere.

Surveys of shorelines around the world, reported by Greenpeace, have recorded the quantity of marine debris either as the number of items per km of shoreline or the number of items per square meter of shoreline. The highest values reported were for Indonesia (up to 29.1 items per m) and Sicily (up to 231 items per m).

Seabed Pollution
Seabed Pollution. Photo Source: Bouteilles à la mer org.

It’s been reported by Greenpeace that an estimated 70 percent of the mass of fragmented plastic present in the open oceans of the world does sink to the deep-sea bed. A limited body of literature exists, though, concerning these small to microscopic particles (micro debris) mirroring the little research addressed to marine litter on the sea floor.

Ecosystem Changes

Another effect of the plastic tide that goes beyond visual is its potentiality to change entire ecosystems.

“Plastic is not just an aesthetic problem,” says marine biologist David Barnes of the British Antarctic Survey. “It can actually change entire ecosystems.” He has documented that plastic debris which floats on the oceans, acts as rafts for small sea creatures to grow and travel on. This represents a potential threat for the marine environment should an alien species become established. It is postulated that the slow speed at which plastic debris crosses oceans makes it an ideal vehicle for this. The organisms have plenty of time to adapt to different water and climatic conditions.

Coral Reefs

Derelict fishing gear can be destructive to coral reefs. Corals are in fact animals, even though they may exhibit some of the characteristics of plants and are often mistaken for rocks. In scientific classification, corals fall under the phylum Cnidaria and the class Anthozoa. They are relatives of jellyfish and anemones. (NOAA)

Nets and lines become snagged on coral and subsequent wave action causes coral heads to break off at points where the debris was attached. Once freed, debris can again snag on more coral and the whole process is repeated. This cycle continues until the debris is removed or becomes weighted down with enough broken coral to sink (NOAA 2005a). Eventually, derelict fishing gear may become incorporated into the reef structure.

Bags in Ocean
Plastic on Coral. Photo Source: EPA

Plastic bags can kill coral by covering and suffocating them, or by blocking sunlight needed by the coral to survive. During 2001, so many plastic bags were regularly seen in the Gulf of Aqaba, off the coast of Jordan, that the Board of Aqaba Special Economic Zone issued a law banning the production, distribution, and trade of plastic bags within the areas under their jurisdiction.

Economics

Marine litter cause serious economic losses to various sectors and authorities. Among the most seriously affected are coastal communities (increased expenditures for beach cleaning, public health and waste disposal), tourism (loss of income, bad publicity), shipping (costs associated with fouled propellers, damaged engines, litter removal and waste management in harbors), fishing (reduced and lost catch, damaged nets and other fishing gear, fouled propellers, contamination), fish farming and coastal agriculture.

African coasts
Haina, Dominican Republic. Photo Source: Eduardo Munoz

In a 2007 Fortune Magazine article about India, it was written that the costs of river pollution to the economy are enormous. Waterborne diseases are India’s leading cause of childhood mortality. Shreekant Gupta, a professor at the Delhi School of Economics who specializes in the environment, estimates that lost productivity from death and disease resulting from river pollution and other environmental damage is equivalent to about 4 percent of gross domestic product.

The bill for cleaning the beaches in Bohuslän, on the west coast of Sweden, in just one year was reportedly at least 10 million SEK or $1,550,200. In Britain, Shetland fishermen reported that 92 per cent of them had recurring problems with debris in nets, with each boat losing between $10,500 and $53,300 per year as a result of marine litter. The cost to the local industry could be as high as $4,300,000. The municipality of Ventanillas in Peru has calculated that it would have to invest around $400,000 a year in order to clean its coastline, while its annual budget for cleaning all public areas is only half that amount. (Unep)

Our Oceans and coastlines are under unprecedented plastics waste attack. It’s coming back at us in many ways. It’s a dire problem that only received serious scientific and public attention in the early 90’s, as we know, but all along the perpetrators have simply and clearly been identified.

THE AGGRESSORS

The obvious and simple answer is: us…

Behind each and every piece of littered plastic debris there is a human face. At a critical decision point, someone, somewhere, mishandled it, either thoughtlessly or deliberately. Cigarette filters and cigar tips, fishing line, rope and gear, baby diapers and nappies, six-pack rings, beverage bottles and cans, disposable syringes, tires, the litany of plastic litter is as varied as the products available in the global marketplace, but it all shares a common origin.

Sources

260 million tons per year is our estimated plastic consumption, 6 789 billion, is the estimated world population (United States Census Bureau, as of October 2009). Our voracious appetite for plastics, coupled with a culture of discarding products that we have chosen for their inherent longevity, is a combination of lethal nature for our environment.

Plastic ocean
Plastic Sea. Photo Source: Coastal wiki

The ultimate symbol of our throwaway lifestyle is the plastic bag: 500 billion to 1 trillion plastic bags is the number consumed annually, which is about a million a minute. The production of plastic bags creates enough solid waste per year to fill the Empire State Building two and a half times. The petroleum used to make only 14 plastic bags could drive a car 1 mile.

Plastic bags are commonly found in waterways, on beaches, and in other unofficial dumping sites across China, for instance. Litter caused by the notorious bags has been referred to as “white pollution.”

In the United States, however, measures to ban or curtail the use of plastic bags have met with official resistance. With its powerful lobby, the plastics industry argues that jobs will disappear. The industry employs some two million workers. Americans alone throw out at least 100 billion bags a year, the equivalent of throwing away 12 million gallons of oil, which seems an intolerable waste. Until the U.S. follows the lead of San Francisco, China, Ireland, Uganda, South Africa, Russia, and Hong Kong and targets the reduction of plastic bags using legislature, we each need to make a conscious choice and refuse to use it.

The core of the plastic waste instillation in world’s oceans is primarily rooted in poor practices of solid waste management, a lack of infrastructure, various human activities, an inadequate understanding on the part of the public of the potential consequences of their actions, the lack of adequate legal and enforcement systems nationally and internationally, and a lack of financial resources affected to the cause. Mainly a consensus needs to happen, as a culture of behavioral changes needs to be promoted.

The four main land-sources of plastics debris have been identified as:

  • Shoreline And Recreational Activities Related Litter

    This includes: bags, balloons, beverages bottles, cans, caps, lids, shoes, cups, plates, forks, knives, spoons, food wrappers/containers, six-pack holders, pull tabs, shotgun shells/wadding, straws, stirrers, toys, medical hygiene (condom, syringe), drug and smoking paraphernalia (The filters are made of cellulose acetate, a synthetic polymer (fiber) that can last for many years in the environment), and 55 gallons drums. All this land-based debris blows, washes, or is discharged into the water from land areas after people engaged in beach-going activities have discarded it.

    Branscombe
    Branscombe, United Kingdom, Photo: Matt Cardy

    About 80 percent of all tourist flock to coastal areas. Massive influxes of tourists, often to a relatively small area, have a huge impact, adding to the pollution of the local population, putting local infrastructure and habitats under enormous pressure. For example, 85 percent of the 1.8 million people who visit Australia’s Great Barrier Reef are concentrated in two small areas, Cairns and the Whitsunday Islands, which together have a human population of just 130,000 or so, WWF reported.

    Shoreline activities account for 58 percent of the marine litter in the Baltic Sea region and almost half in Japan and the Republic of Korea. In Jordan, recreational activities contribute up to 67 percent of the total discharge of marine litter. This is a particularly big problem in the East Asian Seas region – home to 1.8 billion people, 60 percent of whom live in coastal areas – with its fast growing shipping and industrial development. Other emerging hotspots include the oil-boom coasts of the Caspian and the littoral states of Iran and Azerbaijan.

    In South Asia, the growing ship-breaking industry has become a major source of marine debris. In Gujarat, India – one of the largest and busiest ship-breaking yards in the world – operations are carried out on a 10-kilometer stretch on the beaches of Alang, generating peeled-off paint chips and other types of non-degradable solid waste making its way into the sea.

  • Sewage (Waste Waters Containing Plastic Type Products, Rivers, Waterways)

    Under normal, dry weather conditions, most wastes are screened out of sewage in countries that do apply strict sewage treatment. However, materials can bypass treatment systems and enter waterways when rain levels exceed sewage treatment facilities’ handling capacity. During these times, sewage overflows occur.

    The Yamuna River, which flows 855 miles from the Himalayas into the Ganges, is one of India’s most, but not only, polluted river. The Centre for Science and Environment says that nearly 80 percent of the river’s pollution is the result of sewage. Combined with industrial runoff, that comes to more than three billion liters of waste per day, a quantity well beyond the river’s assimilative capacity. Many Indian rivers are so polluted they exceed permissible levels for safe bathing.

    Yamuna River in New Delhi
    Yamuna River in New Delhi. Photo: Manan Vastsyayana

    It has been reported that the lack of adequate solid waste management facilities results in hazardous wastes entering the waters of the Western Indian Ocean, South Asian Seas, and southern Black Sea, among others.

  • Fishing Related Debris

    marine debris net

     

    Photo: ©© Jan Vozenilek-05-0924 / The Midway Journey

    Dumping, wastes from ships, boats platforms (20%). Derraik (2002) stated that ships are estimated to dump 6.5 million tons of plastic a year. An estimated fourth fifths of the oceanic debris is litter blown seaward from landfills and urban runoff washed down storm drains. (Unep). Clean up on land where 80 percent of the plastic debris originates is thus the primarily obvious answer.

Manual Clean Up

The simplest, yet highly effective, action is the manual clean up of the beaches, coasts, rivers, lands and estuaries.

National and international manual clean-up operations of shorelines and sea floor are in existence.

For instance, the past 20 years, the Japan Environmental Action Network (JEAN) has been organizing a yearly beach cleanup and survey.

On an international level, the International Coastal Cleanup (ICC) was installed. The International Coastal Cleanup (ICC) engages the public to remove trash and debris from the world’s beaches and waterways, to identify the sources of debris, and to change the behaviors that cause pollution. The origins of the ICC began in 1985 with research conducted by The Ocean Conservancy (then known as the Center for Marine Conservation – CMC) on plastics in the marine environment. Contracted by the U.S. Environmental Protection Agency, Office of Toxic Substances, the CMC produced the report Plastics in the Ocean: More Than a Litter Problem, which was the first study to identify plastics as a significant marine debris hazard. The data collected and analyzed from the annual ICC Cleanup is used locally, nationally and internationally to influence policy decisions, spawn campaigns for recycling programs, support public education programs, launch adopt-a-beach programs, and even storm water system overhaul and legislative reform.

The Clean Up the World program is run in conjunction with UNEP. It engages more than 40 million people from 120 different countries in clean up operations.

Hawaiin shores
Hawaiin shores. Photo Source: epa.gov

As part of its Rise Above Plastics campaign, Surfrider foundation is hosting frequent beach clean-ups; it is an example of an encouraging trend towards collective awareness and action to solve the problem at its source.

Worldwide private groups and associations are more and more aware that clean-up does need to happen, one day at a time, one person at a time.

Cleaning Up Of The Oceans Debris In The Open Seas

NOAA has also been contacted regarding cleanup of the debris directly in the garbage patch and other areas of the North Pacific; however, cleanup is likely to be more difficult than it may seem. “If only things were that simple. We could just go out there and scoop up an island,” says Holly Bamford, director of NOAA’s marine debris program. “If it was one big mass, it would make our jobs a whole lot easier.” It’s like a galaxy of garbage, populated by billions of smaller trash islands that may be hidden underwater or spread out over many miles.

Furthermore, in some areas where marine debris concentrates so does marine life, such as in the STCZ. This makes simple scooping up of the material risky, more harm than good may be caused. Straining ocean waters for plastics would capture the plankton that is the base of the marine food web and responsible for 50 percent of the photosynthesis on Earth. (NOAA).

As Captain Charles Moore once said: the cleaning up effort of the oceanic garbage patches “would bankrupt any country and kill wildlife in the nets as it went.”

However, confident in the future and investigating new horizons, Doug Woodring, from Project Kaisei, will be producing a documentary for National Geographic testing catch techniques for the plastic waste (“we know not all can be caught, but some can for sure”), at least for the largest debris that we know do decompose over time and actually more rapidly than previously thought.

Marine debris accumulation
Marine debris accumulation, on seafloor. Photo Source: NOAA

The clean up operation is the most immediate, highly effective, and simplest, action/plan that we, the problem, can undertake right now to contribute to the solution. It is a great starting point for a fundamental cultural change that need to occur, which is part of a major consensus.

David

Children refugees from Myanmar tell of trauma

Rohingya refugees from Myanmar tell of trauma

Some hid in rice fields, others ate only leaves while making the long journey by foot across the border into Bangladesh.

New arrivals are grateful for whatever support they can find [Mohammad Ponir Hossain/Reuters]

Cox's Bazar, Bangladesh – Outside this town by the Bay of Bengal, we kept bumping into fresh arrivals when we visited the camps for Rohingya refugees fleeing a security crackdown in neighbouring Myanmar.

Many of them said they were from the village of Kearipara in Myanmar. From the sounds of it, that village has been utterly devastated.

All of them shared similar stories: watching family members get murdered, hiding without eating for days, and having their homes burned down.

Several told us about having to sell their valuables – rings, piercings, earrings, whatever they had on them – to facilitate a safe passage into Bangladesh.

The route, which was always difficult and deadly, has become even more problematic.

After thousands of Rohingya were found stranded and starving off the coast of southern Thailand in the middle of last year, widespread international coverage forced the hands of governments of the region to crack down on a network of human traffickers who were exploiting the desperate refugees for cash.

But those very traffickers were also paradoxically the Muslim Rohingya's only hope to make it out of predominantly Buddhist Myanmar and get on the circuitous trek that would take them through Bangladesh and Thailand into the relatively safe haven of Malaysia.

Now, just getting across the border to Bangladesh is a tough proposition for the Rohingya.

The refugees we met described hiding in rice fields for days. Some didn't eat. Others ate only leaves they found in the forests on the hills surrounding the border.

 

They advanced a few minutes at a time, taking care to stop and check every few hundred metres to make sure the Myanmar army or border guards weren't lying in wait – making a long journey by foot even longer.

Arriving in Bangladesh didn't mean the ordeal was over. If they were caught by the authorities, some would be allowed through by the border guards, others would be turned back.

Every few hundred metres there were checkpoints manned by armed patrols. Next to each of them would be one or two Rohingya families who'd been caught.

Would the soldiers show clemency? Or would they be returned to the heart of the violence they were fleeing? They sat by the side of the road, unsure of their fate.

Tens of thousands have managed to get into Bangladesh. Many of them are in the unofficial Rohingya refugee camps near the tourist town of Cox's Bazar.

Their hosts are refugees themselves with little to offer in terms of food or shelter.

But the community was pulling together to do what they could, faced with the suffering of their fellow Rohingya.

The new arrivals were grateful for whatever support they could find, but seething with resentment at the lack of action by the international community.

Ethnic cleansing proof

As far as they are concerned, the world has decided that the Rohingya are expendable.

From the Bangladesh side of the border, the evidence of what the UN has called a campaign of ethnic cleansing in Myanmar seems strong.

Aung San Suu Kyi, in response, has said that blame shouldn't be cast until all the facts are known.

That's fair enough.

But one of the known facts is that the Myanmar government won't let journalists or independent observers enter the areas where large-scale violence is believed to be taking place.

Why keep journalists out if Myanmar authorities have nothing to hide?

  by 

 

 

 

Mike Prettyman,
Chief Information Officer at Green Fire Engineered Reclamation
For more information come to the website

Children of the Landfill Project

Green Fire Engineered Reclamation

Join our active groups on Markethive

Children of the Landfill
Green Fire Engineered Reclamation

David

Take Cryptocurrency As Payment On WP Site

Take Cryptocurrency As Payment On WP Site

Free multi-cryptocurrency accounts with instant exchange

There are WordPress plugins that are gateways to the Cryptonator exchange. The GoURL series on WordPress.org or the website (https://gourl.io). I have been using these for about 8 months and have had no problems.

Cryptonator is an all-in-one online Bitcoin wallet which supports multiple cryptocurrencies such as Bitcoin (BTC), Litecoin (LTC), Dogecoin (DOGE) and others. It enables fast and easy direct transactions and allows instant exchange between different cryptocurrencies in one personal account. Combining usability with high level privacy , anonymity and security, Cryptonator offers free multi-cryptocurrency accounts, which are accessible 24/7 worldwide on your laptop, desktop or mobile devices alike.

Cryptonator lets customers checkout in cryptocurrency, automatically convert received payments to USD or EUR and withdraw it to your bank account. Or just leave your received cryptocurrency payments on your Cryptonator account for future use. It`s up to you!

Sign up for a free account

https://www.cryptonator.com/auth/signup/101069939

Due Diligence

http://www.scamidentifier.com/review/cryptonator.com/

Mike Prettyman,
Chief Information Officer at Green Fire Engineered Reclamation
For more information come to the website

Children of the Landfill Project

Green Fire Engineered Reclamation

Join our active groups on Markethive

Children of the Landfill
Green Fire Engineered Reclamation

David

Global Study from WIEGO Network Reveals How People Living Off Waste Improve Cities

New research released today – ahead of International Waste Pickers’ Day on March 1 – highlights the role and impact of those who make a living from what others throw away. The study challenges the common view that waste pickers have no place in modern solid waste management systems.

WIEGO logo 300dpi (RGB).jpgWaste pickers are among the most invisible workers in the informal economy and often work in deplorable conditions. The study shows how waste pickers in five developing countries play a role in keeping cities clean and highlights the challenges they face in recovering recyclable materials.

In cities where local governments have provided better access to recyclables, integrated waste pickers into formal solid waste management systems and provided protected spaces for sorting and baling waste, waste pickers have report higher earnings, improved door-to-door waste removal services, savings to municipal coffers and reduction in on-the-job health issues.

However, waste pickers in all five study cities – Belo Horizonte, Brazil; Bogota, Colombia; Pune, India; Nakuru, Kenya; and Durban, South Africa – reported significant challenges. Study respondents experienced increased competition from other waste pickers, a reduction in prices for recyclables, and stigmatization and harassment.

These challenges impact family well-being in countries where waste picking is the only work option for many poor people. In Pune, India, for example, waste picking is the main source of household income for 85 per cent of waste pickers’ households. Only 25 per cent of respondents reported having another work activity, indicating the relevance of waste picking as a main source of income.

With the exception of Durban, none of the cities reported formal wage employment as their primary household earnings. Households in some cities received additional income from government grants, illustrating the need for a cushion to fall back on in times of instability.

“Waste pickers are closely linked to local governments and to the urban economy,” says Sonia Dias, Waste Picker Sector Specialist of Women in Informal Employment: Globalizing and Organizing (WIEGO), who co-authored the study with Melanie Samson, WIEGO’s Africa Waste Sector Specialist. “Formally integrating waste pickers into the solid waste management system makes sense because, in many cities, these workers are the ones who are already providing the only collection of household refuse.”

The study findings imply that policymakers should devise better programmes to reduce vulnerability in workers’ lives, create opportunities to integrate waste pickers into formal systems, and effectively protect basic rights to pursue waste as a livelihood. It also recommends that cities address the vulnerabilities of waste pickers and the households that depend on their earnings by:

  • Considering the technical capacities and capabilities of waste pickers in solid waste services to support productivity in the informal economy;
  • Developing a system whereby waste pickers are allowed access to recyclables;
  • Providing infrastructure to conduct recycling activities;
  • Carrying out educational campaigns to change stigmas against informal workers; and
  • Working with waste picker organizations to identify a holistic approach to formalization, including offering capacity training and management courses to improve waste pickers’ skills.

About the Study: The Informal Economy Monitoring Study (IEMS) examines working conditions in the informal economy for home-based workers, street vendors, and waste pickers in 10 cities in Africa, Asia, and Latin America. For the waste-related segment of the IEMS, WIEGO, which led the study, collaborated with local partner organizations of informal workers in five cities: Asociación de Recicladores de Bogotá (ARB); Instituto Nenuca de Desenvolvimento Sustentável – INSEA and the waste pickers’ networks Redesol and Cataunidos in Belo Horizonte; Asiye eTafuleni in Durban; the Kenya National Alliance of Street Vendors and Informal Traders (KENASVIT) in Nakuru; and the waste pickers’ union Kagad Kach Patra Kashtakari Panchayat (KKPKP) in Pune. The Waste Picker Sector Report, an executive summary, and additional information can be found at www.wiego.org.

About WIEGO

About WIEGO: Women in Informal Employment: Globalizing and Organizing (WIEGO) is a global action research-policy network that seeks to improve the status of the working poor, especially women, in the informal economy. It does so by highlighting the informal economy through improved statistics and research; by helping to strengthen member-based organizations of informal workers; and by promoting policy dialogues and processes that include informal workers. Visit www.wiego.org for more information.

Global Study from WIEGO Network Reveals How People Living Off Waste Improve Cities – Press Release – Digital Journal.

Source: Global Study from WIEGO Network Reveals How People Living Off Waste Improve Cities – Press Release – Digital Journal

Mike Prettyman,
Chief Information Officer at Green Fire Engineered Reclamation
For more information come to the website

Children of the Landfill Project

Green Fire Engineered Reclamation

Join our active groups on Markethive

Children of the Landfill
Green Fire Engineered Reclamation

David

Wasting Away Waste And Landfill

Wasting Away Waste And Landfill

Landfills are the old form of waste treatment and are still commonly used in most places around the world. Since the advent of agriculture, humans have had to deal with garbage disposal. Yesterday’s dump was a pit or hill on the outskirts of town that played host to disease-carrying rodents, insects, and dangerous objects.

Today, the number of “open landfills” in the world directly effect half of the world’s population, 3.5 billion people. 1

My study of waste and garbage has given me an insight into how civilizations handled waste through history.

A Brief History of the Beginning

The first recorded find of a “landfill” was in North America.

Archaeological studies shows a clan of Native Americans in what is now Colorado produced an average of 5.3 pounds of waste a day. That was in 6500BC. Americans today produce about 5.4 pounds of waste per day. 2

Then in 500 BC, Athens Greece organized the first municipal dump in western world. Regulations required waste to be dumped at least a mile from the city limits.

The New Testament of Bible refers to waste

Jerusalem Palestine, in the Valley of Gehenna also called Sheoal in the New Testament of the Bible "Though I descent into Sheol, thou art there." Sheoal was apparently a dump outside of the city of that periodically burned. It became synonymous with "hell."

The Threat of Waste

Throughout history trash has played a continuous but invisible role. The diseases spawned during the middle ages devastated the world’s population but our history books talk about it and the rats but never do they talk about the garbage and the waste as having any responsibility for the diseases. 3

How Much Waste is too Much

Current global Municipal Solid Waste (MSW) generation levels are approximately 1.3 billion tonnes per year, and are expected to increase to approximately 2.2 billion tonnes per year by 2025. This represents a significant increase in per capita waste generation rates, from 1.2 kg (2.64 lb) to 1.42 kg (3.12 lb) per person per day in the next fifteen years. However, global averages are broad estimates only as rates vary considerably by region, country, city, and even within cities. 4

MSW generation rates are influenced by economic development, the degree of industrialization, public habits, and local climate. Generally, the higher the economic development and rate of urbanization, the greater the amount of solid waste produced.

A Population of Wasters

Trash is becoming a larger and larger problem for us and for the environment. As the global population grows and the people continue to concentrate in metropolitan areas, we continue to waste more and more, and, we use more of our natural resources. Our global resources are running short.

Green Fire Engineered Reclamation is designed and dedicated to Landfill Mining and the sciences associated with it. We can’t stop the waste or the flow of waste but we can arrest some of the environmental influences of the open landfills. Open landfills contribute about 20% to the global pollution, water, air and disease.

Join with us to effect change.

I appreciate your attention

Mike Prettyman,
Chief Information Officer at Green Fire Engineered Reclamation
For more information come to the website

Children of the Landfill Project

Green Fire Engineered Reclamation

Join our active groups on Markethive

Children of the Landfill
Green Fire Engineered Reclamation

 

Citations


1. ISWA calls open dumps a ‘global health emergency’

“open dumpsites receive roughly 40 per cent of the world’s waste and serve about 3.5 to 4 billion people;”

http://resource.co/article/iswa-calls-open-dumps-%E2%80%98global-health-emergency%E2%80%99-10463


2. In the earlier report, they warned that global solid waste generation was on pace to increase 70 percent by 2025, rising from more than 3.5 million tonnes per day in 2010 to more than 6 million tonnes per day by 2025. The waste from cities alone is already enough to fill a line of trash trucks 5,000 kilometers long every day. The global cost of dealing with all that trash is rising too: from $205 billion a year in 2010 to $375 billion by 2025, with the sharpest cost increases in developing countries.

http://www.worldbank.org/en/news/feature/2013/10/30/global-waste-on-pace-to-triple


3. “Trash has played a tremendous role in history. The Bubonic Plague, cholera and typhoid fever, to mention a few, were diseases that altered the populations of Europe and influenced monarchies. They were perpetuated by filth that harbored rats, and contaminated water supply. It was not uncommon for Europeans to throw their garbage and even human wastes out of the window. They figured that stray dogs would eat whatever they threw out. “

Kenneth Barbalace. The History of Waste. EnvironmentalChemistry.com. Aug. 2003. Accessed on-line: 11/12/2016 http://EnvironmentalChemistry.com/yogi/environmental/wastehistory.html


4. "The planet is already straining from the impacts of today’s waste and we are on a path to more than triple quantities," the authors write. "Through a move towards stable or declining populations, denser and better-managed cities consuming fewer resources, and greater equity and use of technology, we can bring peak waste forward and down. The environmental, economic and social benefits would be enormous."

The article, Waste Production Must Peak This Century, is the cover story in the Oct. 31, 2013, issue of Nature.

 

David